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Abstract

Governments and corporations frequently auction assets with embedded real options

using both cash and contingent bids. I characterize equilibrium bidding and option ex-

ercise strategies, and find that the moral hazard associated with the uncontractible

investment timing inefficiently and asymmetrically accelerates or delays investments.

I use a mechanism design approach instead of security “steepness” to rank securities

and derive the optimal security. Furthermore, without sellers’ commitment to the se-

curity design, all auction equilibria are equivalent to cash auctions, and investments

are socially efficient. The results are broadly consistent with empirical observations,

for example in the sales of oil leases.
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1 Introduction

On March 30, 2013, the Bureau of Ocean Energy Management held an oil lease auction

that netted the U.S. government $1.2 billion. Exxon-Mobil emerged as a dominant bidder

and was entitled, but not obliged, to develop seven of the 320 auctioned tracts in the Central

Gulf of Mexico, and was to pay the government 18.75% royalty on future oil production.1 Less

than two years later, Shire PLC acquired NPS Pharmaceutical, Inc. for approximately $5.2

billion in cash to grow NPS’s portfolio of licenses and products through its global footprint,

expertise in gastrointestinal disorders, and capabilities in rare disease patient management.2

These two deals involve classic examples of real options whose sale and exercise underlie some

of the most crucial decisions for entrepreneurs, firm executives, and government officials.

These transactions also routinely see competing bids in combinations of cash and contingent

securities, and can be effectively viewed through the lens of security-bid auctions.3 Why did

Shire make an all-cash offer? Why are most oil tracts neither producing nor under active

exploration?4 More fundamentally, how do contingent bids affect real option exercise? How

should a seller design the auctions to trade off rent extraction and incentive provision? What

is the role of the seller’s commitment to using specific security bids? What securities buyers

prefer to offer?

Without a model of auctions of real options, simultaneously addressing these important

1ENERCOM Consulting, 360 articles: Central Gulf of Mexico Lease Sale - Come on in, the Water if Fine!
(March 21, 2013), http:oilandgas360.comcentral-gulf-of-mexico-lease-sale-come-on-in-the-water-is-fine.

2Shire News: Shire to Acquire NPS Pharma as Further Step in Building a Leading Biotech.
http://www.shire.com/shireplc/en/investors/irshirenews?id=1052

3Oil leases have been auctioned using cash, bonus-bid, royalty and profit-share contracts. In technology
transfers, such as the licensing in pharmaceuticals, rivals bid contingent contracts (Vishwasrao (2007) and
Bessy and Brousseau (1998)). In sales of large assets, such as the wireless spectrum auction for FCC
bandwidth, aggressive bidders can declare bankruptcy and the bids are essentially debts (Board (2007a) and
Zheng (2001)). Equities, preferred convertibles, and call options are frequently used in M&A and venture
capital financing (Martin (1996), Kaplan and Stromberg (2003), and Hellmann (2006)). Other examples
include advance and royalty payments in publishing contracts (Dessauer (1981) and Caves (2003)), motion
picture deals (Chisholm (1997)), business licenses such as electronic gambling machines with pre-specified
profit tax, and military procurement contracts (McAfee and McMillan (1987b)).

4“Oil and Gas Lease Utilization,”. Report to the President” by Department of the Interior dated May
2012. 72% of oil and gas tracts offshore and 56% of those that are on federal lands are idle. This revelation
has triggered a huge public outcry and heated debate in Congress on the reason for the purported sluggish
development of natural resources despite the imbalance in supply and demand, and has policy implications
in the backdrop of Obama’s proposal to increase onshore royalties by 50%.
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questions is difficult. This paper does so by tying together optimal stopping with security bid

choices in a tractable framework. Under the intuition that sellers and bidders often derive

different values from the option exercise, I show that common security bids distort real option

exercises, and characterize the conditions whereby they accelerate or delay investments; I

then demonstrate that the seller’s revenue is non-monotone in “steepness” — a popular mea-

sure for ranking securities in the literature (e.g., DeMarzo, Kremer, and Skrzypacz (2005))

— and security designs can be ranked instead using a mechanism design approach; finally, I

find that when a seller lacks commitment to using specific security bids, bidding and option

exercise equilibria are equivalent to those in cash auctions.

Auctions of real options are prevalent in licensing and patent acquisitions, leasing of

natural resources, real estate development, M&A deals, venture capital and private equity

markets, and privatization of large national enterprises.5 They often entail tremendous

financial resources and timing decisions that are prohibitively costly to contract upon sale.6

After oil and gas leases are sold, it is hard for the government to monitor and contract

on the exact time for exploratory and development drills; after an acquisition deal, the

target company’s shareholders may find it challenging to control when the managers incur

irreversible costs to close a plant or launch a new product; real estate developers can typically

time the market for construction without the influence of the original landowner who sells

the property, even though the latter may retain stakes in the project. I therefore focus

on security bidding and the moral hazard of post-auction option exercise, and show their

interaction not only adds new theoretical insights, but are relevant in practice as well.

Prior studies on security-bid auctions do not consider how security design influences post-

auction investment timing. Similarly, studies on real options analyze the sales and exercise

of real options in isolation. This paper therefore attempts to bridge the gap between auction

theory and agency theory in real options. Specifically, I model the sale and exercise of a

typical investment option with endogenous participation. The baseline model involves a seller

5Bolton, Roland, Vickers, and Burda (1992) describe the privatization policies in Central and Eastern
Europe. Pakes (1986) and Schwartz (2004) discuss patents as real options.

6In the Gulf of Mexico alone, the oil and gas leases auctioned by the U.S. federal government in 1954-2007
have exceeded $300 billion, and annual licensing deals by pharmaceutical giants exceed $20 billion even in
the aftermath of the financial crisis. M&A volume worldwide is also in the trillions of dollars annually.
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and multiple potential bidders who are risk neutral and maximize their expected payoffs.

Time is continuous and in two sequential stages. In the first stage, the seller auctions an

asset and participants bid cash and contingent securities, before the seller allocates the asset.

In the second stage, the winning bidder rationally times the exercise of the investment option

and delivers the contingent payment to the seller.

The key friction in the model is the non-contractibility of the bidders’ post-auction in-

vestment timing, which depends on their private types. Consequently, security bids distort

a winning bidder’s option exercise from the socially efficient exercises in cash-bid auctions.

I first show that for general forms of securities, optimal stopping strategies exist and follow

threshold strategies. The acceleration or delay of investments can be simply characterized

using the change in what I call “discounted security payoff” — the net present value of a

security payoff upon option exercise — evaluated at a given threshold. Unlike earlier studies

that focus on the optimal stopping problem associated with debts or equities, this paper

characterizes delays and accelerations of option exercises associated with very general forms

of securities.

The distortion from the efficient timing can either better or worse align the winning

bidder’s incentive with the seller’s. I show that relative to a social planner, the seller essen-

tially has a real option of which the virtual strike price to her is augmented by an amount

equivalent to the information rent she pays, and the exercise is controlled by the winning

bidder whose incentives are not aligned with the seller in general. On the one hand, the seller

naturally prefers security designs that lead winning bidders to moderate delay the exercise

to take this additional exercise cost into consideration. On the other hand, if a security

makes the winning bidder either accelerate or excessively delay the option exercise, its cost

can dominate the usual benefits of using contingent bids, such as enhanced rent extraction.7

I take an initial step in analyzing the tradeoff use a mechanism design approach to

decompose the tradeoffs concerning the seller’s revenue into considerations about information

asymmetry between the seller and the bidder, and those about investment distortions due to

7Prima facie, the type of bids should not matter as a cash equivalent always exists. One advantage to
contingent bids is that they enhance the seller’s revenue by effectively linking payoff to a variable affiliated
with bidders’ private information—the “linkage” principle in Milgrom (1985). Contingent bids also mitigate
liquidity or legal constraints and reduce valuations gaps among various parties.
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the use of contingent securities. In particular, the moral hazard breaks the well-established

ranking of securities using “steepness” DeMarzo, Kremer, and Skrzypacz (2005). A “steeper”

security can link the seller’s payoff to the better type and thus allows her to extract greater

rent from the bidders, but at the same time it may distort post-auction investment which

reduces the total surplus is reduced. In general, the seller prefers security designs that

allows her to utilize the information rent (that she has to pay anyway) to motivate the

winning bidder to exercise the real option at a time the seller prefers. The optimal design

entails a combination of cash and royalty payments, which is consistent with the popular use

of negotiated royalty payments and down payments in sales of marketing rights, licensing

agreements, publishing and movie contracts, and many other franchise business practices.

I then move on to consider what I call informal auctions in which the seller lacks the

commitment to security choice and allocation rules. Whereas in formal settings such as

oil lease auctions, wireless spectrum auctions, or privatization auctions, the seller specifies

explicitly and commits to an ordered set of security bids, sellers in many other sales lack

such commitment; that is, bidders bid anything they want and can potentially revise their

offers.8 Prominent examples of informal auctions include corporate takeovers and project

finance, where bidders decide what to offer. Still others, such as licensing agreements and

contracts in the entertainment industry, appear in both categories.

I show that the seller’s commitment to security design significantly influences the bidding

and investment outcomes. In particular, bidding equilibria in both first-price and ascending

informal auctions are equivalent to those in cash auctions. The intuition is that cash-like

bids allow a bidder to generate the maximum social surplus, and at the same time outbid

competitors in the cheapest way. For example, a bidder with higher valuation can more easily

outbid others using cash versus equity shares, because the same shares cost him more than

they cost someone with a lower valuation. This advantage of using cash leads to bidders’

using cash in equilibrium, which, despite being suboptimal to the seller, are socially optimal

because they remove inefficient post-auction investment.

These results help understand several puzzling empirical observations, and add general

8DeMarzo, Kremer, and Skrzypacz (2005) introduce a similar concept but rule out offer adjustments.
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theoretical insights to auctions and real option exercises. In particular, a high royalty rate

in oil and gas lease auctions causes the winning bidder to delay exploration beyond efficient

rational waiting due to optionality, especially in highly uncertain environments, which po-

tentially explains the large number of idle tracts reported. I also show more bidders could

decrease revenue and social welfare by exacerbating moral hazard associated with security

bids, and how restricting the range of bidding may help mitigate the distortion in investment

timing. Finally, I embed my model in a general framework of auctions with post-auction

moral hazard to highlight the importance and uniqueness of the timing moral hazard asso-

ciated with real option exercises, such as the asymmetric distortion of option exercise due

to the irreversible nature of time.

Literature

This paper builds on studies of security-bid auctions and their applications in corporate fi-

nance.9 DeMarzo, Kremer, and Skrzypacz (2005) give an extensive exposition of security-bid

auctions, showing “steeper” securities lead to higher expected value to the seller. Samuelson

(1987) suggests adverse selection and moral hazard complicate the effect. Che and Kim

(2010) and Rhodes-Kropf and Viswanathan (2000) demonstrate, respectively, that adverse

selection could reverse the ranking of securities and lead to inefficiencies in bankruptcy

reorganizations and privatizations. This paper examines post-auction moral hazard—the

second issue Samuelson (1987) emphasized. Kogan and Morgan (2010) compare equity and

debt auctions under moral hazard in an experimental study. Laffont and Tirole (1987), Eső

and Szentes (2007), McAfee and McMillan (1987a), and Riordan and Sappington (1987) also

study how moral hazard affects competitive sales. Most closely-related is Wong (2016), which

similarly studies post-auction moral hazard, but of information acquisition; so are Povel and

Singh (2010) and Liu (2012) that relate security-bid auctions to external financing. This

paper is unique in considering the moral hazard of option exercise, incorporating both stan-

9Hansen (1985), Crémer (1987) and Riley (1988) are among the early contributions. Hansen (2001)
reviews the corporate auction process. Dasgupta and Hansen (2007) and Boone and Mulherin (2007) justify
viewing corporate takeovers as auctions. Eckbo, Giammarino, and Heinkel (1990) consider the role of non-
cash bids. Skrzypacz (2013) gives an overview.
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dard security payments and issues concerning commitment to security design, which are

commonly observed in real life, for example, in corporate mergers and acquisitions.

Also related are the theories of incentive contracting, typically applied to defense procure-

ment (Engelbrecht-Wiggans (1987), McAfee and McMillan (1986), and Laffont and Tirole

(1987)). Board (2007b) derives optimal selling mechanisms of options. This paper extends

by deriving the optimal design under interdependent values in continuous-time setting with

persistent private information, and differs primarily in the focus on standard security bids

and the associated post-auction real option exercises in both formal and informal auctions,

rather than the optimal design.

This study also complements the emerging literature on agency issues in a real-options

framework. Maeland (2002), Grenadier and Wang (2005), and Cong (2012) study distortion

of investment incentives due to adverse selection and moral hazard. Grenadier and Malenko

(2011) study how firm managers accelerate or delay real option exercise to signal private

information. Other studies on dynamic agency and investment under uncertainty involve

either first-best effort being optimal even with moral hazard (e.g. DeMarzo and Fishman

(2007)), or the irrelevance of real option exercise under the first-best scenario (e.g. Philippon

and Sannikov (2007)). One exception is Gryglewicz and Hartman-Glaser (2015) that shows

the magnitude of effort cost and severity of moral hazard affect real option timing in a non-

monotone fashion. This paper complements and illustrates that accelerations and delays in

real investments can also arise due to security bidding and seller’s endogenous auction design.

The asymmetric distortion due to the irreversible nature of time complements studies such

as Grenadier and Malenko (2011) and Cong (2017) to underscore the uniqueness of corporate

timing decisions.

The remainder of the paper proceeds as follows. Section 2 describes the economic envi-

ronment and sets up the model; Section 3 analyzes optimal strategies for post-auction option

exercise. Section 4 derives bidding equilibria and security ranking in formal auctions. Sec-

tion 5 characterizes informal auctions as games of signaling and investment timing. Section

6 discusses further implications and extensions. Section 7 concludes. The appendix contains

all the proofs and generalizations.
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2 Setup and Optimal Exercise

A risk-neutral revenue-maximizing seller with discount rate r > 0 owns a project with

an embedded option. Once developed, the project generates a verifiable lump sum cash

flow whose value Pt is public and evolves stochastically according to a geometric Brownian

motion (GBM)

dPt = µPtdt+ σPtdBt, (1)

where Bt is a standard Brownian motion under the equivalent martingale measure, µ is

the instantaneous conditional expected percentage change per unit time in Pt, and σ is the

instantaneous conditional standard deviation per unit time. I assume µ < r to ensure a

finite value of the option. Note that we could interpret Pt as the present value of a stream

of future cash flows.

The seller does not have the expertise to exploit the option but can auction the project

to N risk neutral potential bidders with the same discount rate r who have the expertise to

exploit the option.10 Bidder i knows his private investment cost for the project θi, and the

distribution of types for other bidders which is i.i.d. with positive support [θ, θ].11 Denote

the cumulative distribution and density function by F (θ) and f(θ), respectively. Similar to

DeMarzo, Kremer, and Skrzypacz (2005) (DKS), a bidder has to pay a cost X ≥ 0 upon

winning the auction, which we can interpret as the initial resources the project requires, such

as illiquid human capital, the social cost of underwriting securities, or simply his opportunity

cost.12 Readers should interpret X as expenses that have to be incurred upfront, which DKS

does not require in their static setup. It mainly endogenizes the bidder participation, and is

not crucial for our results. The project is worthless to the bidder if it is never developed.

I assume that whereas the revenue from exercise P is observable and contractible, the cost

θ and thus the profit P −θ are not. This assumption is realistic because contracts or security

10For clarity, I refer to the seller as female and the bidders as male.
11The analysis also applies when bidders differ in other quantities, such as production capacities.
12DKS remarks in the extension that the moral hazard associated with investment X can help rule out

reimbursement from the seller (which violates limited liability) in equilibrium. I focus on the moral hazard
of post-auction exercise of the real option even with regular securities that satisfy limited liability, and how
it distorts bidding and investment efficiency.
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designs based on profit are rare due to high monitoring costs, limited comparability, and

landowners’ risk aversion (Robinson (1984)). The procurement literature has also established

that profit reporting is subject to manipulations, and contracting on revenue is more feasible.

Past experience in oil lease auctions has also shown considerable difficulties in reaching

agreement on the proper profits (Opaluch, Grigalunas, Anderson, Trandafir, and Jin (2010)).

Consequently, payments are usually contingent on top-line revenue in the development of

natural resources, contracts on marketing and licensing rights, as well as franchise chain

operations.

Bidders compete by offering security bids that are combinations of contingent payments

from the cash flow of the project and non-contingent payments that can be viewed as upfront

cash. Unless stated otherwise, the remainder of the paper focuses on standard security bids

as defined next.

DEFINITION. A standard security bid is an upfront cash payment C ∈ R and a

contingent payment at the time of investment τ given by an upper-semicontinuous, weakly

increasing function S(Pτ ) ∈ [0, Pτ ].

Upper-semicontinuity is a very weak technical condition to ensure the existence of optimal

stopping solution, and is satisfied by almost all commonly used securities. S(Pτ ) ∈ [0, Pτ ]

implies limited liability from both the seller and bidders. Standard security bids are simple

and intuitive, and as discussed later, can implement the optimal auction design even in the

augmented universe of security bids. They admit, for example, equity bids for which the

seller receives a fraction α of the payoff (S(P ) = αP ), call option bids for which the seller

can pay a strike price k for the project cash flow (S(P ) = [P −k]+), and bonus bids on fixed

royalty rate φ for which the seller receives bonus C and royalty payment S(P ) = φP .

The agents interact in continuous time in two stages: the auction stage, and the post-

auction timing stage. I work backward to first solve for the optimal investment strategy for

the winning bidder, then derive the bidding equilibrium given the bidders’ valuations based

on their investment strategies.
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Formal auctions and informal auctions mainly differ in the seller’s commitment to the

form of security bids. Throughout the paper, I focus on first-price auctions (FPAs) and

second-price auctions (SPAs) in which the bidder with the highest bid wins and pays the

highest bid or the second-highest bid, respectively. I assume the seller commits to no renego-

tiation post-auction, and to no contracting or resale to losing or non-participating bidders.

Welfare is defined as the total payoff to the seller and bidders, and efficiency in this

paper means constrained efficiency from a global optimizer’s perspective; that is, welfare

maximizing under the same informational or institutional constraints as individual agents.

Cash Auctions as a Benchmark

In cash auctions, a bidder of type θ owns the project entirely upon winning, and optimally

develops the project at time t to maximize E[e−rt(Pt − θ)]. The optimal strategy for this

standard problem is well-known and involves immediate investment upon reaching an upper

threshold P ∗(θ) (e.g., McDonald and Siegel (1986) and Dixit and Pindyck (1994)). The

value of the investment option W and P ∗(θ) are independent of X and t, and are given by

P ∗(θ) = max

{
P0,

β

β − 1
θ

}
, where β =

1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1, and (2)

W (P0; θ) = D(P0;P ∗(θ))(P ∗(θ)− θ), where D(P ;P ′) =

(
P

P ′

)β
for P ≤ P ′. (3)

Note that D(Pt;P
′) corresponds to the time-t price of an Arrow-Debreu security that pays

one dollar when the first moment threshold P ′ ≥ Pt is reached, also known as the “expected

discount factor”. The option value of the project is simply the total value of Arrow-Debreu

securities that replicate the payoff of the investment option at exercise.

Bidder i’s private valuation is then W (P0; θi)−X, which decreases in θi, and his bidding

strategies are the same as those in standard cash FPAs and SPAs. A cutoff type exists for

participation θc = min{θ, θBE}, where the break-even type θBE solves W (P0; θ)−X = 0 and

is given explicitly as θBE = (β−1)(P β
0 β
−βX−1)

1
β−11{P0>βX}+(P0−X)1{P0≤βX}. Types with

costs higher than θc do not participate. Because post-auction investments are not distorted,
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FPAs and SPAs generate equivalent revenues to the seller (Revenue Equivalence Theorem),

and efficiently allocate the project to type θ(1) if θ(1) ≤ θc, where θ(j) is the jth lowest realized

θ. The cases with a reserve price or entry fee are similar.

3 Optimal Post-sale Investments

Whereas earlier studies involving real option exercises typically focus on simple forms of

security bids, such as equities or cash, which admits well-known optimal stopping solutions,

our security space is significantly more general. As such, a priori, there is no guarantee

that optimal value function and investment strategy exist and are well-behaved. Adding to

the difficulty is that most theorems and results in the studies of optimal stopping that the

extant real options literature reference involve a payoff function being C1 (see, for example,

Strulovici and Szydlowski (2012) for a recent discussion). However, securities commonly

used in financial markets often have kinks, which makes deriving optimal stopping strategies

in our setting rather challenging.

Therefore, I first characterize the optimal value function and the corresponding invest-

ment strategy, taking as given the standard security bid in equilibrium. Allowing security

bids in general forms complicates the solution to the optimal stopping problem, because it

can no longer be taken for granted that the solution is a simple first-hitting problem.

Suppose the winning bidder of type θ pays standard security {C, S(Pt)} where C is paid

at the time of the auction and S(Pt) at time t of investment option exercise. His private

valuation at the auction is

Ṽ (C, S(·), θ) = sup
τ≥0

EP [e−rτ (Pτ − S(Pτ )− θ)]−X − C, (4)

where τ is the stopping time that he optimizes over. The fact that S(P ) is of general form

distinguishes this problem from traditional real-options models. The following lemma dispels

the concern that Ṽ (θ) may not be well-defined.

Lemma 1. An optimal value function Ṽ (C, S(·), θ) as defined in 4exists and is continuously

10



decreasing in θ. The optimal stopping time involves P first hitting a threshold value from

either above or below.

Notice that even with potential jumps in the security payoff, the optimal value function is

still well-defined. Consistent with Theorem 5.10 in Harrison (2013), an optimal stopping

strategy generally involves first-hitting and may have both upper and lower thresholds that

are dependent on P0.

Following the convention in the literature of security design, I further assume,

Assumption 1. In formal auctions, standard securities also satisfy double-monotonicity:

both S(P ) and P − S(P ) are weakly increasing in P .

In other words, in addition to being standard, a security bid also satisfies that P − S(P ) is

weakly increasing. Double-monotonicity is a standard assumption in security design (e.g.,

Harris and Raviv (1989); Innes (1990); Nachman and Noe (1994); Hart and Moore (1995a);

DeMarzo and Duffie (1999); DeMarzo, Kremer, and Skrzypacz (2005)), and is satisfied by

most securities and contracts used in practice, such as equity, warrants, convertible debt,

and even uncommon securities such as putable stock.13 Moreover, this assumption allows

us to focus on one-sided threshold strategies that the literature typically studies. I relax

this assumption when discussing informal auctions in which potential bidders can offer any

standard security with the property that S(P ) is weakly increasing.

Proposition 1. Under Assumption 1, P−β[P − S(P )− θ] has an optimizer P̃ ≥ P0 for all

participating bidders. An optimal investment strategy exists and follows a threshold strategy

involving τ(P̃ ) = {inf t ≥ 0 : Pt ≥ P̃}. Consequently, the optimal value function is given by

supP≥P0
D(P0;P )[P − S(P )− θ]−X.

The optimal stopping obviously depends on P0 and the security used. In fact, we show in

the proof that Ṽ (C, S(·), θ) is non-decreasing in P0.14 More importantly, the proposition

provides us with a simple way to characterize optimal investment for any given security in

13As is argued in the literature, if “charitable contributions” and “burning cash” cannot be prevented,
then the assumption is without loss of generality.

14This implies that auction timing matters. I model auction timing in an earlier draft of the paper, and
give more detailed discussion in a companion paper Cong (2017).
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closed-forms without imposing ad hoc restrictions, as illustrated next for the case of equity

bids.

Equity Bids and Investment Delays

For equity bids, C = 0 and S(P ) = αP given a bid of α which is the fraction of shares

the winning bidder has to pay. We show later that bidding equilibria exist for both FPAs

and SPAs. Proposition 1 implies that the optimal investment threshold can be derived from

the first- and second-order conditions,15

Corollary 1. In auctions with equity bids, the winning bidder invests when cash flow first

reaches P equity(θ) = max
{
P0,

βθ
(β−1)(1−α)

}
.

Comparing the threshold to P ∗(θ), the investment is inefficiently delayed—undesirable to the

seller because her revenue D(P0;P )S(P ) is decreasing in P . Ex post the auction, investing

some time earlier could improve both seller’s revenue and welfare.

Existing real-option models with agency, such as that in Grenadier and Wang (2005),

also predict decreased or delayed investments, as we see here. However, the security choice

in selling real options could also lead to accelerated investment, and can be an alternative

to empire-building-based explanations of overinvestment, as the next example illustrates.16

Call Option Auctions and Investment Accelerations

Consider call option bids with no reserve price. Let k be the strike price the winning

bidder of type θ contracts, then S(P ) = max{P − k, 0} and C = 0. Bidder θ’s present value

conditional on winning and exercising at τ is EP [D(P0;Pτ )(Pτ −max{Pτ − k, 0} − θ)]−X.

It is a dominated strategy for type θ to bid a strike less than X + θ, because if he fails to

break even upon winning. So he is better off bidding k ≥ X + θ. If he bids a strike greater

than P ∗(θ), upon winning in either FPA or SPA he always invests with the threshold P ∗(θ),

and the seller’s call option is never exercised. But then he could bid a lower k to increase

15In the appendix I provide a standard verification argument, which works for equity bids, to highlight
how Proposition 1 simplifies the characterization, not to mention that the standard verification argument
does not work for many other securities without further technical assumptions.

16Gryglewicz and Hartman-Glaser (2015) underscore this point in a setting with dynamic agency.
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the chance of winning. Hence k ∈ [X + θ, P ∗(θ)]. The investment threshold maximizes the

winning bidder’s value, as described in the next corollary.

Corollary 2. In auctions with call option bids, a bidder of type θ always bids k ∈ [X +

θ, P ∗(θ)], and upon winning, invests when the cash flow first reaches P call(θ) = max{P0, k}.

Notice P call(θ) ≤ P ∗(θ) and the equality holds when P0 >
β
β−1

θ. Inefficiency therefore lies in

the potential acceleration of investments. Basically, if the call option is going to be exercised,

there is no incentive for the bidder to keep timing the market because doing so delays his

payment k.

Figure 1 illustrates how different security bids lead to different investment thresholds

and timings. The figure includes another common form of security: friendly debt S(P ) =

min(P,B), where B is a fixed promise of payment.17

Discounted Securities and Optimal Investment

It turns out that we can go beyond equity and call option to say more about optimal

investment under standard securities in general. Compared to the investment threshold

β
β−1

θ in Equation (2), the threshold with security payment can be higher because the bidder

faces an additional cost S(P ). However, the sensitivity of the security payment to cash flow

implies a smaller option premium. Depending on which effect dominates, the threshold could

be either higher or lower. We next provide a simple general characterization of investment

distortion.

Proposition 2. Suppose a winning bidder optimally invests at P ∗. Then relative to the so-

cially efficient post-auction investment timing, the investment is strictly delayed if P−βS(P )

is increasing at P ∗, and weakly accelerated if P−βS(P ) is weakly decreasing at P ∗.

We note that investment timing is socially efficient in a cash-bid auction, thus the proposition

is essentially a characterization of how security bids distort post-sale optimal exercise of the

17Friendly debts are essentially zero-coupon debts, also known as Qard/Qardul hassan in Islamic finance.
They are popular in contractual agreements in Islamic banking and microfinance, and are equivalent to
granting the winning bidder instead of the seller call options - the exact opposite situation to that for call
option bids.
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real option. This proposition does not require knowing the type of the winning bidder and

shows the distortion only depends on the change in “discounted security” P β
0 P
−βS(P ) =

D(P0;P )S(P ) evaluated at the equilibrium investment timing. Given that security bid in

equilibrium is publicly observed, the proposition is a simple and practical characterization

of the investment distortion. In the appendix, I also prove two complementary results,

summarized in the next corollaries.

Corollary 3. A winning bidder of type θ strictly delays investment if P−βS(P ) is decreasing

at P ∗(θ) = β
β−1

θ, and weakly accelerates investment if P−βS(P ) is weakly increasing at P ∗(θ).

Corollary 4. For any security such that the function P−βS(P ) is unimodal in [P0,∞), the

investment is always inefficiently and weakly accelerated if P−βS(P ) has a mode smaller

than P ∗(θ); the investment is always inefficiently and weakly delayed if P−βS(P ) has a mode

greater than P ∗(θ), and the delay is strict if the mode(s) of P−βS(P ) are all greater than

P ∗(θ).

Note that unimodality of the discounted security function is satisfied by many commonly

used securities.

When we change the exercise threshold, it is the corresponding change in discounted

security payoff that matters. If as we increase the exercise threshold, the option value

increases less than the discounted security payment to the bidder, the latter is (locally)

biased towards delaying the exercise relative to a social planner; otherwise, he is biased

towards accelerating the investment.

What is more interesting is the asymmetry in delay versus acceleration: investment is

weakly accelerated in Corollary 4 even if the mode(s) of P−βS(P ) are all smaller than P ∗(θ).

This asymmetry also appears in Proposition 2 in that even if P−βS(P ) is strictly decreasing

at optimal exercise or strictly increasing at P ∗(θ), we cannot conclude the investment is

accelerated. This asymmetry derives from the fundamental irreversibility of time: for an

auction held at threshold P0, one cannot deviate to exercising the option at a first-hitting

threshold smaller than P0 (going back in time), but can always deviate to exercising at

a first-hitting threshold higher than P0 (waiting longer). In other words, if the socially
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efficient investment timing is at the time of the auction, a winner who prefers to accelerate

the investment can at best invest at P0 but not earlier.

4 Formal Auctions and Ranking Securities

Given the post-auction exercise of the real option, this section describes and analyzes

formal auctions. I first derive the bidding equilibria, then illustrate how conventional results

on security ranking are modified, before providing conditions for comparing different types

of securities. Later in Section 6 I relate the findings to the auctions and development of oil

and gas tracts, and discuss optimal auction design.

In formal auctions , the seller commits to a pre-specified, well-ordered set of allowed

bids, which are ranked by simple, easily implementable rules. A variant of the definition in

DKS formalizes this notion of well-orderedness:

DEFINITION An ordered set of securities ranked by index s is defined by a left-

continuous map Π(s) = {C(s), S(s, ·)} from [sL, sH ] ⊂ R to the set of standard security

bids such that for each voluntary participant of type θ, V (s, θ) ≡ Ṽ (C(s), S(s, ·), θ) is

non-negative and non-increasing in s on [sL, s̃] and negative on (s̃, sH ] for some s̃ ∈ [sL, sH).

This definition simply requires that in addition to being standard, an ordered set of se-

curities admits one-dimensional ranking with index s for any payoff from the project, and

permissible bids cover a wide range such that each participant earns a non-negative profit

by bidding low enough but earns no profit by bidding too high. Any such sets can be

represented by the mapping defined above up to an order-preserving transformation of the

index. C(s) really captures the payment that is not contingent on the bidder’s investment

timing action, and S(s, ·) is the contingent component (where we have a moral hazard due

to contract incompleteness). In fact, C(s) does not play a significant role in the distortion

of investment timing, and is mainly used in the discussion of optimal mechanism design to

satisfy the incentive compatibility constraints. One can simply think of a typical ordered set
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of securities as having one component fixed when the other component is allowed to vary,

which are common in practice, or the two component covary positively so that the ranking

is unambiguous. The current specification nests these cases, and also allows other cases as

long as the securities with the set can be ordered.

This notion of an ordered set of securities subsumes a definition based on securities’

values to the seller for a given type of the bidder, because the latter is necessarily an ordered

set here. Our definition is more inclusive of contingent bids used in real life: s could be

the fraction of shares α in a pure equity auction {C(α) = 0, S(α, P ) = αP}, the (negative)

strike price k in a call-option auction {C(−k) = 0, S(−k, P ) = max{P −k, 0}}, or the bonus

b in a bonus-bid auction with royalty rate φ fixed {C(b) = b, S(b, P ) = φP}.18 M&As, VC

contracts, and lease auctions routinely use such securities, and indeed the bidder offering the

highest s wins.19

To focus on monotone separating equilibria, we assume the seller commits to allocating

the project to the bidder with the highest index. In fact, most security bids I examine

including the optimal security derived later are also well-ordered in terms of their values to

the seller. Had we restricted our attention to an ordered set of securities where high s gives

higher value to the seller, we still need to impose the above condition in the definition for a

bidding equilibrium to exist. The winning bidder pays a security using the highest-bid index

in FPAs or the next-highest-bid index in SPAs. This is common in practice and in earlier

models (e.g., Kogan and Morgan (2010)). If it were not the case, the better types cannot

always separate and we may have partial pooling, which I discuss in Section ??.

4.1 Equilibrium Bidding and Allocation

Using the fact that V (s, θ) is well-defined (Lemma 1), I characterize the auction equilibria

(counterparts to DKS Lemmas 2 and 3 but for auctions of real options). Throughout the

18One could equivalently define an ordered set based on monotonicity of security values to the seller and
derive almost all the results, but that approach rules out auctions with commonly used security bids, such
as equity bids without a minimum share retention.

19In M&As with the acquirer’s stocks as bids, C simply corresponds to the value of the acquirer’s cash
flows that are independent of the acquisition, X corresponds to the opportunity cost of incorporating the
target firm, and P is the payoff from the acquired assets and projects, and the synergy created.
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paper, I assume that the standard “single-crossing” (as described in Lemma 2) for FPAs. I

also assume that buyers resolves any indifference in bidding by bidding the higher s.

Lemma 2. In FPAs, when lnV (s, θ) is absolutely continuous in s with the derivative (when

exists) decreasing in θ, a unique symmetric Bayesian Nash equilibrium exists that is decreas-

ing, differentiable, and is characterized by:

s′(θ) =
(N − 1)f(θ)

1− F (θ)

V (s(θ), θ)

V1(s(θ), θ)
(5)

for θ ≤ θ̂ with the boundary condition s(θ̂) = sup{s ∈ [sL, sH ] | V (s, θ̂) = 0}. The cut-off

type for participation is θ̂ = sup{θ ≤ θ | maxs V (s, θ) ≥ 0}.

Lemma 3. In SPAs, the unique Bayesian Nash equilibrium in weakly undominated strategies

is for type θ to bid s(θ) = sup{s ∈ [sL, sH ] | V (s, θ) ≥ 0}, which is decreasing in θ. The

cut-off type for participation is θ̂ = sup{θ ≤ θ | maxs V (s, θ) ≥ 0}.

The fact that the bidding strategies are monotone implies directly that the investment option

should be allocated, if at all, to a bidder with the least investment cost. The level of

participation is the same for FPAs and SPAs, and is weakly smaller than that in cash

auctions. In addition, the amount of competition as indicated by N , the initial commitment

cost X, and the cashflow level at the time of the auction P0 all affect bidding behavior:

Corollary 5. Bidders bid more aggressively (weakly greater s for all types, and strictly

greater s for a positive measure of types) in FPAs with security bids as N increases or X

decreases, or if V and V/V1 are increasing in P0, as P0 increases. They bid more aggressively

in SPAs with security bids as X decreases or if V is increasing in P0, as P0 increases .

Intuitively, a smaller X or higher P0 correspond to higher valuations of the project by the

bidders, which allows them to promise more to the seller to increase their chances of winning.

When N is bigger in FPAs, one has to increase the bid to outbid more competitors. However,

this does not apply in SPAs because on bidders’ bidding strategy is independent of others’

bids.
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Take equity auctions for example. In SPAs, the bidder θ increases α until V (α, θ) = 0.

In FPAs, since ∂2 lnV (α,θ)
∂α∂θ

< 0 is well-defined except on the boundary P0 = βθ
(β−1)(1−α)

, Lemma

2 applies and α(θ) is continuous and decreasing. For example, when X = 0,

α(θ) =

∫ θ̂

θ

(N − 1)f(θ
′′
)

β(1− F (θ′′))
exp

[∫ θ

θ′′

(N − 1)f(θ′)

β(1− F (θ′))
dθ′
]
dθ
′′
, for θ ≤ θ̂. (6)

With uniform distribution, this translates to α(θ) = 1− ( θ−θ̂
θ−θ )

N−1
β . Clearly bidders bid more

shares when N or P0 increases or X decreases (cutoff θ̂ is increasing in P0 and decreasing in

X). Note inefficient delays of investments also follow directly from Corollary 1.

The bidding with call options is similar. In FPAs, when P0 ≤ k, V =
Pβ0 (k−θ)

kβ
− X,

otherwise V = k − θ −X. Lemma 2 applies for the bidding equilibrium.20 Next for SPAs,

for those who participate, they bid up to their valuations, in other words, k = θ + X if

θ < P0 −X or k solves
Pβ0 (k−θ)

kβ
= X otherwise. In either case, k < β

β−1
θ and the investment

is strictly accelerated. In fact, the seller makes a profit only when θ < P0 − X, otherwise

the strike price is simply the value of the project, netting her no profit. The cutoff type is

the same as that in FPAs.

With equilibrium bidding and allocation characterized, we next examine how some of the

conventional results on security ranking are modified.

4.2 Security Ranking

While the bidding equilibria resemble those in DKS, bidders’ incentives for option exercise

generally differ from the seller’s, and this misalignment alters many conventional results in

security-bid auctions. Below I first give some examples for which the results in DKS no

longer apply. I then discuss why the tradeoff considered here is different from that in DKS

and is new to the literature, before taking a mechanism design approach to ranking the

securities.

20Note ∂ lnV
∂(−k) < 0. For k ≤ P0, ∂2 lnV

∂(−k)∂θ = − 1
(k−θ−X)2 < 0; for k > P0, it is − (β−1)

V 2kβ

[(
P0

k

)β θ
β−1 −X

]
≤

− (β−1)
V 2kβ

[(
P0

k

)β
(k − θ)−X

]
= − (β−1)

V kβ
< 0 using the fact k ≤ β

β−1θ.
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No “One-Size-Fits-All”

DKS show that “steeper” securities yield higher revenues for the seller. This ranking can

break down due to post-auction moral hazard: a “steeper” security extracts more from the

winning bidder’s information rent, but it may also reduce his incentive to invest efficiently

post-auction. This is also seen in figures 4 and 3 and the table below. In general, there is

no “one size fits all” for security ranking. As I show in this section, not only the “steepness”

of a security has to be traded off against the incentive provision for option exercise, but the

exercise timing distortion alone causes interesting tradeoffs in the seller’s revenue as well.

Ranking depends on parameters such as N and σ, such as shown in Figure 3. Ranking also

depends on the initial cash flow P0. as seen in Figure 4(a): among several pure contingent

securities, equity gives the highest expected revenue and call option the lowest at P0 = 280,

whereas call option is the highest and debt is the lowest when P0 = 360. The worst security

design when P0 = 300 more than doubles the revenue from the best security design when

P0 = 220. Welfare is similarly affected (Figure 4(b)). In this regard, strategic timing is as

important as security design, a topic explored in Cong (2017). In sum, security ranking has

to be considered in conjunction with potential misalignment of incentives, timing of auctions,

and the number of bidders.

To illustrate how the investment timing make security bids either benefitial or costly,

consider the following example of security-bid SPAs. We include bonus-bid auctions to

relate to oil lease auctions. Though a bonus-bid auction with φ = 1/8 results in higher

revenue, but welfare is significantly lowered due to inefficient investment. Moreover, both

equity bids and bonus bids with φ = 1/4 yield significantly lower revenues and welfares

compared to the cash auction.

P0 = 15, N = 18, β = 1.8, θ ∼ Unif [10, 50], X = 3.

Security Cash-bid Equity-bid Bonus-bid Bonus-bid
Design φ = 1/8 φ = 1/4

Revenue 1.6578 1.6416 1.7403 1.4429

Welfare 2.2565 2.0597 2.1862 1.6027

Table 1: Expected Welfare and Seller’s Revenue.
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“Steepness of Discounted Securities”

There are at least two approaches to the challenging problem of security ranking under

moral hazard. While not particularly straight-forward, one way to rank the security types

is to use a modified concept of “steepness” in DKS. The benefit of security bids in DKS

relies on the linkage principle which operates through the fact that for a given type of the

bidder, the security payoff depends on the value of the asset (type) not only through the

action the winning bidder takes. In our setting the security payoff only depends on the

timing action. Therefore, the tradeoff in using security bids in our setting is fundamentally

different from that in DKS, and the linkage principle is not the driving force in our setting

and the “steepness” approach does not apply directly.

That said, we can still derive sufficient conditions for a security design to be “steeper”

than another. If the discounted security payoffs after considering the moral hazard of invest-

ment timing can be ranked in terms of “steepness”, the tradeoff highlighted in DKS would

dominate.

Let S and S̃ denote two sets of ordered standard securities (basically they denote the

types of securities) indexed by s and s̃ respectively. Let the optimal investment thresholds

under the two sets be P (θ, s) and P̃ (θ, s̃), where in the notation it is explicit that the

threshold depends on the exact security used (both the type and the index), and the type of

the bidder who makes the investment decision. Following DKS, I define a discounted security

D(P0;P (θ, s))S(P (θ, s)) to be “steeper” than D(P0; P̃ (θ, s̃))S̃(P̃ (θ, s̃)) if

(1) S and S̃ are continuous in P .

(2) ∀θ, s, and s̃, P (θ, s) and P̃ (θ, s̃) are continuous in θ.

(3) ∀θ, whenever C(s) + D(P0;P (θ, s))S(P (θ, s)) = C̃(s̃) + D(P0; P̃ (θ, s̃))S̃(P̃ (θ, s̃)),

D(P0;P (θ, s))S(P (θ, s))−D(P0; P̃ (θ, s̃))S̃(P̃ (θ, s̃)) is increasing at θ.

The conditions basically require that securities from the set {C, S} be more sensitive to

the true type at the crossing point whenever the NPV of a security from {C, S} and one

from {C̃, S̃} are equal. This is similar to the “steepness” requirement in DKS, but applied to

the properly discounted value of the security payoffs, where the discounting is endogenously

determined by the optimal option exercise. If the discounted security of S is steeper than
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that of S̃, {C, S} generates weakly more revenue to the seller than {C̃, S̃}. Unfortunately,

while steepness in DKS allows ranking of most common securities, the modified version of

“steepness” only does so when we impose further parametric conditions on some common

securities. Therefore, I take a mechanism design approach to write out the seller’s expected

revenue directly.

A Mechanism Design Approach

The direct revelation principle allows us to focus on a truth-telling mechanism. Sup-

pose the seller times the auction at ta and specifies the security choice of the general form

S(θ̃i, θ−i, It) at time t ≥ ta, where θ̃i is the reported type by i, θ−i are other participants’

reported types, and Iτ is the set of contractible information up to time t.21 I assume for the

remainder of the paper that z(θ) = θ + F (θ)/f(θ) is increasing.22

I derive in the appendix an integral form of the bidders’ incentive compatibility condi-

tions, and in so doing extend Board (2007b)’s analysis to standard real-options settings with

standard security bids and even interdependent values.

Proposition 3. The seller’s revenue in formal FPA and SPA with standard security bids is

given by

E
[
1{θ(1)≤θ̂}

[
e−rτ

∗
1 (Pτ∗1 − z(θ(1)))−X

]]
, (7)

where θ(1) is the smallest realized cost, and τ ∗1 is the bidder’s corresponding optimal stopping

time for investment according to Proposition 1, and Lemmas 2 and 3, with the cutoff type θ̂

given therein.

The seller’s payoff thus depends on the “virtual valuation” of the best type rather than

the actual valuation.23 The seller essentially owns the best type’s real option with an addi-

21Standard security bids is a special case under this general form. Though written in flow payment, S
could be a lump-sum payment when it is a Delta function. For standard security bids, Iτ contains cash flow
from project Pτ when invested at τ , but in general It could include the history of P up to t, and t itself if
they are contractible.

22This assumption is standard in the auctions literature, for example, see Krishna (2009). One sufficient
condition is the “inverse hazard function” F (θ)/f(θ)’s being non-decreasing. The general intuition still
applies without this assumption, though one has to introduce “ironing” techniques which complicates the
discussion.

23This payoff is equivalent to the expected marginal revenue (MR), see Bulow and Roberts (1989).
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tional stochastic cost F (θ(1))/f(θ(1)). Consequently, the winning bidder’s optimal investment

timing differs from what the seller would prefer.

The mechanism design approach allows us to write out the seller’s expected payoff, which

interacts with post-auction option exercise only through τ ∗. Therefore we can separately

analyze the information cost the seller has to pay, which is common in auction bidding

equilibria when bidders are privately informed, from how post-auction exercise impacts the

seller’s revenue. The information rent affects how the seller and bidders split the surplus,

and the investment distortion due to security design affects the total surplus generated.

In general, the seller prefers a later option exercise than what is socially optimal because

P ∗(z(θ)) > P ∗(θ).

This proposition applies to ranking all ordered standard securities, and in a sense is more

general than the results in DKS which only applies to sets that can be compared in terms of

steepness. Given a set of securities and the prior on bidder types, Proposition 1 allows us to

compute the investment distortion for each type, which, together with Proposition 3, allows

us to compute the expected revenue the seller gets. We therefore can compare two security

designs easily in FPAs and SPAs. In particular, a contingent bid that is proportional to the

reverse hazard rate would generate a higher revenue for the seller, which I further discuss

when solving for the optimal design in Section 6.4.

So far, we have assumed that the seller can commit to the security design and allocation

rule. This assumption does not hold in many real life situations where the seller always

choose the most attractive offer ex post, potentially allowing bids outside the pre-specified

set of securities. I turn to this case next.

5 Informal Auctions and the Cash Advantage

Many economic interactions such as corporate takeovers, competition for supply con-

tracts, and talent recruitment have characteristics of auctions because buyers are competing

with one another to make offers.24. Yet unlike formal auctions in which the sellers restrict

24When an asset of a Delaware corporation is for sale, the Revlon rule imposes upon directors a duty
to solicit competitive bids to maximize shareholders’ value. It may seem that many takeovers occur after
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security bids to a pre-specified ordered set, bidders often come up with their own offer terms

and the sellers typically lack commitment to explicit auction design, taking the most desirable

offer ex post. For example, in Shire’s acquisition of NPS Pharmaceutical, Shire repeatedly

proposed various deal terms and NPS was considering deals with other pharmaceutical com-

panies as well. I follow DKS to call these transactions informal auctions.25 What security

design emerges in equilibrium? Is there still inefficient option exercise in informal auctions?

Answers to these questions would allow us to apply the insights derived earlier to a broader

array of auctions of real options in real life.

I find investments are always efficient when the seller cannot commit to pre-specified

security design, and in equilibrium, every bid is equivalent to cash. This strengthens the

conclusion in DKS: cash is not only the cheapest way for a better type to separate from

worse types; it is also the most efficient way.

5.1 A Signaling and Timing Game

If the seller commits to no pre-specified bidding or allocation rule, she chooses the bid that

gives her the highest expected payoff based on her beliefs regarding the type of each bidder.

Because the bidding and investment involve sequential actions, the equilibrium concept for

informal auctions is Perfect Bayesian Equilibrium. A first-price informal auction

therefore exhibits features of a signaling and timing game of the following form:

1. Participating bidders submit informal bids simultaneously. An informal bid Πi by

bidder i is a cash payment Ci and a standard security payment Si(P ).

2. The seller chooses the winning bidder rationally according to the valuation function

R(Πi) = Ci + E[Rθ(S
i)|Θ(Πi)] provided she values the bid more than the reservation

value Y . Θ(Πi) is her belief of bidder i’s type upon seeing the bid and all available

information, and Rθ(S
i) = E[e−rτ

i
θSi(Pτ iθ)], where τ iθ is the optimal stopping rule for

type θ when bidding Πi, that is, τ iθ = argmaxτ≥ta E[e−rτ (Pτ − Si(Pτ )− θ)]−X − Ci.

one-on-one negotiations, but as demonstrated in Aktas, De Bodt, and Roll (2010), even in such cases latent
competition such as the threat of sale to a rival buyer is significant.

25DKS do not consider offer adjustments from winning and losing bidders as I do in ascending informal
auctions defined later.
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3. The winning bidder i pays the upfront cash Ci and the initial cost X, and then invests

rationally at τ iθi and makes the contingent payment.

Note the seller’s valuation R(Πi) is not necessarily the same as the value of the security to

bidder i, Ci +Rθi(S
i).26

We first note that if the seller does not value a bid the same as the bidder does, at least

one bidder would find the seller values his security payment less, and would rather pay in

cash.

Proposition 4. An essentially unique bidding equilibrium exists for an informal FPA, which

is equivalent, in terms of allocation outcome and expected payoffs, to a first-price cash auction

with reserve price Y . In particular, post-auction investment is efficient.

Note that even though an informal auction is a signaling game, the fact that cash bids are

independent of the bidders’ type allows us to avoid the discussion of equilibrium refinement

and focus on the essentially unique equilibrium. This is also the case in DKS when cash is

available.

In equilibrium, the bids are all cash-like, that is, their values are independent of beliefs

on bidders’ types. A better type finds it cheaper to use a security that is less sensitive

to the true type and creates more social surplus. For example, using equities to separate

from worse types not only inefficiently delays investment, but also costs better types more

because their α shares are worth more than the worse types’. Cash-like securities ensure

efficient investment and cheap separation and are thus most attractive. Moreover, because

a better type is indifferent to mimicking a marginally worse type in equilibrium, all bidders

must be using cash-like securities.

Given Proposition 4, and the revenue equivalence between FPAs and SPAs in cash, we

see that letting bidders bid any forms of security is socially optimal.

26One may question if the setup of the game misses out on any informal offers, such as contracting on
the timing of investment when feasible. The results are robust to additional side contracts because one
can enlarge the security space from S(Pt) to S(It) where It is the entire contractible information set, as
long as limited liabilities hold. The proofs apply with minor changes in notations.The results also hold for
non-standard security bids as long as optimal investment strategy exists.
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5.2 Ascending Informal Auctions

As McAdams and Schwarz (2007) point out, in real life committing to a sealed-bid auc-

tion is hard, especially in corporate acquisitions.27 The board of directors of a target firm

has to disclose all bids to shareholders, and considers subsequent offers to avoid shareholder

lawsuits. In reality, informal auctions either entail multiple rounds of negotiations and re-

peated communications, or manifest themselves in two-stage auctions used in privatization,

takeover, and merger and acquisitions (e.g., Frankel (2011)). The former resembles an in-

formal English auction in which buyers raise their bids until one winner emerges; Perry,

Wolfstetter, and Zamir (2000) show the latter are typically robust mechanisms equivalent to

an English auction. This calls for the definition of an ascending informal auction:

1. The seller gradually increases a numerical score R from R = Y , and a bidder remains

in the auction if he can deliver an informal bid from a ”feasible set” {Π : R(Π) ≥ R}.

The auction ends when only one bidder is left, and he chooses an informal bid from

the final “feasible set.”

2. The winning bidder i pays the upfront cash Ci and the initial cost X at ta, and then

invests rationally at τ iθi and makes the contingent payment Si(Pτ iθi
), where Ci and Si

are given by his chosen final bid.

Note this variant of the English auction is equivalent to SPAs, in which bidders bid a score

they generate and the winner pays the second-highest score bid.28 This a priori is different

from SPAs in which the winning bidder pays the informal bid corresponding to the second

highest score. This distinction is important because the same security bids generally cost

the buyers differently. In what follows, I show this ascending informal auction leads to the

same expected revenue for the seller, and is not subject to renegotiation from the bidders.

27Even in formal auctions, such a commitment is difficult to maintain. in “Lawsuit Seeks to Block Sale
of G.M. Building”, New York Times, September 20, 2003, Charles Bagli documents how General Motors
entertained a late offer after auctioning its Manhattan building in a first-price auction.

28Defining an ascending auction with multiple security bids is challenging. Closely related is Gorbenko and
Malenko (2017), another study to formalize an English auction with security bids (both cash and equity).
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Proposition 5. An ascending informal auction has an essentially unique bidding equilib-

rium that is equivalent to a second-price cash auction with reserve price Y . Post-auction

investment is efficient.

Propositions 4 and 5 establish useful benchmark outcomes for informal bidding and post-

auction investment. They do not imply bidders only use cash in informal auctions, but when

bidders are not liquidity constrained, they would use contingent securities that result in the

same outcomes as using cash.

In conclusion, without seller’s commitment to security design, investment distortion is

largely absent in informal auctions, and equilibrium bids are equivalent to cash bids. This

paper therefore highlights a new advantage of using cash from the perspective of the bidders.

6 Discussion

6.1 Implications for Oil Lease Auctions

One key application of the model is the sales of natural resources, such as oil lease auc-

tions. In many countries, the predominant design for auctioning oil leases involves fixing a

royalty rate φ and having contractors bid up-front “bonuses” in first-price formal auctions.29.

Because such auctions are typically modeled with interdependent values, I first extend the

discussion to interdependent settings, and show that the inefficient delay in drilling is increas-

ing and convex in volatility and royalty rate, and has positive cross partials.30 Furthermore,

the social cost of the investment lag due to the distortion associated with royalty is increas-

ing and convex in the royalty rate φ. I then present corroborating evidence using data from

lease sales and drilling activities in the gulf of Mexico.

29In the United States, the Minerals Lands Leasing Act prescribes the base share of royalty rate at 1/8
the value of production for onshore leases, and the Outer Continental Shelf Lands Act used 1/6 for offshore
leases. The offshore rate for leasing beginning in 2008 is set at 18.75%. See Hendricks, Porter, and Tan
(1993) and Haile, Hendricks, and Porter (2010) for more details.

30In addition to being analytically tractable when analyzing auction timing, the private-value framework
is not unrealistic in the sense that the dispersion of bidder types over the common component, such as
signals on the amount of oil reserve has decreased in recent years due to technological improvement, and the
government typically provides as much information as possible to the buyers. By contrast, firms often have
private drilling technologies, and retail and transportation contractors, which fit private-value settings.
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“Mineral Rights” Model

Let the investment cost be K(θi, θ−i), where K is symmetric in other bidders’ report

types, and has positive derivative in θi denoted by K1 that is uniformly bounded by a positive

constant. In the main model of this paper, K(θi, θ−i) = θi, but this specification allows other

cases with interdependent values such as common-value auctions where K(θi, θ−i) = 1
N

∑
j θi.

In “bonus-bid” auctions, the winning bidder owns a fraction 1−φ of the project and has

a real option value L(θ, θ−1) = maxτ E[e−r(τ−ta)((1−φ)Pτ−K(θi, θ−i))]−X. Scaling the cash

flow in Eq.(2) gives the optimal investment threshold P bonus(θ) = max{P0,
β
β−1

K(θi,θ−i)
1−φ } ≥

P ∗(K(θi, θ−i)), thus investment is inefficiently delayed. The equilibrium bidding strategies

are standard from Proposition 6.3 in Krishna (2009):

C(θ) =

∫ θ̂

θ

E[L(θ′, θ′−1)|θ′(1) = θ′]

1− F (θ)
f(θ′)dθ′ (8)

where θ′(1) is the type with least cost among the remaining bidders, and θ̂ is the cut-off type

for participation.

In the proofs of Propositions 3 and 6, I have generalized Propositions 3 and 6 to interdependent-

value settings. When K is such that θi ≤ θj implies K(θi, θ−i) ≤ K(θj, θ−j), I show that

the optimal security design is still a combination of cash and royalty payment, with the

equilibrium royalty rate for type θi modified to

φ(θi, θ−i) =
F (θi)

f(θi)K(θi, θ−i) + F (θi)
(9)

Thus a bonus-bid auction with a uniform royalty rate would not generate the highest revenue.

Moreover, investments are inefficiently delayed with both bonus-bid auction and auction with

optimal security design.

Using the properties of the Wald distribution, the expected inefficient time delay when

a royalty rate φ is used is Γ = − ln(1− φ)/[µ− σ2

2
], where we have assumed µ− σ2

2
> 0 for

the expectation to exist.31 Moreover, ∂Γ
∂φ

> 0, ∂Γ
∂µ

< 0, ∂Γ
∂σ

> 0, ∂2Γ
∂φ2

> 0, ∂2Γ
∂σ2 > 0, ∂2Γ

∂σ∂φ
> 0.

31If µ < σ2/2, the median lag M can be considered instead.
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Not only do more volatile markets or high royalty rates result in longer delays, but they are

mutually reinforcing as well. What is the social cost of the investment lag? It can be shown

that the option value is a fraction (1 − φ + φβ)(1 − φ)β of the socially efficient value, and

the fractional loss L satisfies ∂L
∂φ
> 0, ∂2L

∂φ2
> 0. Again, royalty rate has a compounding effect

on social cost.

Lease Auctions and Drilling in the Gulf of Mexico

The aforementioned predictions are consistent with available empirical evidence. The

US Department of the Interior experimented with royalty auctions in 1978–1983, where

the government fixed a small up-front “bonus” payment and allowed the bidders to com-

pete on royalty rates. Many bidders bid extremely high royalty rates and the tracts were

never drilled (e.g., Dougherty and Lohrenz (1980) and Binmore and Klemperer (2002)). Oil

price and volatility were indeed extremely high during that period. Moreover, Humphries

(2009) reports that the royalty relief programs in the 1990s significantly increased interest

in deep-water leases, and oil production increased sharply. The distortion gives a potential

explanation for why large tracts of land remain idle. Without prescribing detailed policy

changes, this paper suggests that any useful policy recommendations should first focus on

reducing the post-auction moral hazard that is inimical to both the revenue and social wel-

fare. Moreover, instead of uniformly raising the royalty rate, allowing bidders to self select

into differential rates as described in Proposition 6 could be a more effective way to increase

revenue to the government, in both private-value and common-value frameworks.

To test the main message that security bids distort investment timing, we look to the

Deep Water Royalty Relief Act of 1995 (DWRRA), which granted royalty relief for leases

issued in the Gulf of Mexico between 1996 and 2000 at depths greater than 200 meters

located wholly west of 87 degrees, 30 minutes West longitude. In appendix B. I present

the institutional details, data description, and testing results. I use difference-in-difference

identification strategy and find suggestive causal evidence that the lowering of royalty (mostly

from 1/6 and 1/8 to zero) on average leads to 10.8% greater likelihood of exploratory drilling,
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consistent with the model prediction.32 Opaluch, Grigalunas, Anderson, Trandafir, and Jin

(2010) also conclude that increased royalty rates would have a net negative effect on the

social value of offshore development.

6.2 Number of Bidders

Prior literature has established that in private-value auctions increasing the number of

bidders enhances the seller’s revenue (e.g. Bulow and Klemperer (1996)), but in our setting

more bidders implies more aggressive bidding and greater moral hazard. Simulations in

Figure 2 show in the spirit of Samuelson (1985) that revenue and welfare could vary in almost

any way with N when we have security bids and post-auction moral hazard of investment

timing. The impact of competition thus depends on the security design. Figure 3 reveals

the same pattern for the case of friendly debts and call options. Since the expected social

welfare and revenue to the seller need not increase with the number of potential bidders,

limiting participation may improve revenue or welfare. This channel is different from the

participation cost channel in Samuelson (1985) but is consistent with the observation that

sellers in real life restrict the number of bidders even absent entry fees (see Hansen (2001)

and French and McCormick (1984)).

The number of bidders also matters for security choice. Prior studies indicate that

security bids usually perform better than cash bids. Rhodes-Kropf and Viswanathan (2000)

show that any securities auction generates higher expected revenue to the seller than a cash

auction. But since the linkage advantage of security bids lies in the extraction of the winning

bidder’s rent, it decreases in expectation when N increases. Yet moral hazard persists with

many standard securities. In Appendix A.9, I show cash bids dominate a wide range of

contingent securities in FPAs and SPAs in terms of expected revenue and social welfare,

as the number of bidders gets large. The size of the bidders’ market is thus an important

consideration in security choice. The result also suggests security bids are rarely used when

32Similarly, the introduction of Area Wide Leasing in May 1983 made most of the offshore blocks of leases
available for sale, including thousands of tracts in deep water areas. The royalty rates on tracts with water
depth of more than 400 meters were lowered from 1/6 to 1/8. In a previous version of the paper, I use
a simple Cox hazard model estimation, and also find tracts with lower royalty rate experienced greater
exploratory drills.
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the number of bidders is large.

6.3 Optimal Design of Auctions of Real Options

So far, other than considering various security designs, we have not given the seller full

flexibility to design the auction. Conceivably, due to the post-auction moral hazard, it is

possible that a seller in a formal auction may prefer not to rank the bids based on the one-

dimensional index s, or to restrict the range of bidding allowed. More generally, how can

the seller best design the auction?

To answer this question, I build on the insights in Board (2007b) to derive the optimal

security design under the current setting, and show it can be implemented using an auction

with standard security bids. The key insight lies in that the seller has to pay information

rent to the bidders, but can use a bid-specific royalty rate to incentivize the winning bidder

to exercise at P ∗(z(θi)), thus making the bidder face the same optimization problem. The

optimal design complements this royalty rate with a corresponding bonus payment to ensure

truth-telling in the bidding stage.

Proposition 6. An optimal auction design exists and FPAs using well-ordered securities

indexed by s ∈ [sL, sH ] implement it, where sH = −θ, and sL = max{−θ,−θ̂}. Denote θ̂

as the solution to P β
0 (β − 1)β−1 = (X + Y )ββz(θ)β−1, then the securities used are of the

following form:

C(s) =
s

1− β

[
P0

P ∗(z(−s))

]β
−X −

∫ s

sL

[
1− F (−s′)
1− F (−s)

]N−1 [
P0

P ∗(z(−s′))

]β
ds′,

S(s, P ) = φ(s)P, where φ(s) =
F (−s)1{s∈[sL,−θ]}

F (−s)− sf(−s)
. (10)

In equilibrium, type θ bids s = −θ. Recall P bonus = β
β−1

θ
1−φ = P ∗(z(θi)), which implies

that when the bidder equates his marginal benefit of waiting to his marginal cost of waiting,

he and the seller face the same optimization problem. Instead of using revenue-independent

strike payment F (−s)
f(−s) for option exercises (Board (2007b)), the seller can use royalty payments

to align incentives, and the delays in investments depends on the optimal auction timing,
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as well as the optimal security. The interpretation of the optimal security as a cash down

payment plus a royalty payment relates to common discussions on security-bid auctions, and

the contingent payment satisfies limited liability S(·, P ) ∈ [0, P ] and double monotoniticy

(S(P ) and P − S(P ) being non-decreasing), as is typically required in security design.33

Variable royalties with upfront cash are indeed frequently observed in the sales of licensing

or marketing rights and contracts in publishing or movie production. These results also

show that McAfee and McMillan (1987a)’s optimal linear incentive contracts are robust to

time discounting, despite the fact that the discounted project payoff is actually decreasing

in contractible output P .

Note that the royalty rate is increasing in θ if and only if θ
z(θ)

is decreasing in θ. The

type with smaller actual cost relative to virtual cost thus pays less upfront cash and higher

royalty rate. This result makes sense as higher royalty rate is needed to make him invest

as if he bears the virtual cost. This prevents him from mimicking others, lest he pays more

cash, and has a contingent residual that is more sensitive to his investment timing, which

is more distorted in equilibrium. Optimal security thus involves negatively correlated cash

down payments and contingent royalty payments, a novel and testable prediction that is of

interest for empirical studies. That said, the optimal design does not comply with Wilson’s

doctrine of detail-free implementation because it requires common knowledge on bidders’

type distributions.

These results relate to Myerson (1981)’s analysis in a static setting on the wedge be-

tween the seller’s revenue and welfare. In addition to bidder exclusion, option exercises are

inefficiently delayed under the current settings to increase revenue. Moreover, though the

seller still excludes bidders, better market conditions (higher initial P0) encourages partic-

ipation and mitigates the exclusion. This implies that in real life one may not see sellers

excluding bidders so much using entry fees or reserve prices because she has the alternative

tool of choosing a more propitious time to hold the auction (Cong (2017)). For example, an

entrepreneur selling a startup seldom excludes potential acquirers, but rather waits for the

product to have higher valuations before going onto the market. Inefficiencies in dynamic

33See Hart and Moore (1995b), DeMarzo and Duffie (1999), and DeMarzo, Kremer, and Skrzypacz (2005).
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settings are thus multi-dimensional.

6.4 General Post-Auction Moral Hazard and Security Bids

So far we have focused on the post-auction moral hazard of timing the exercise of real

options. As described in the introduction, such timing issues are prevalent in corporate

finance settings; oil-tract drilling, corporate expansion, and real estate developments are

some salient examples. Auctions of real options therefore constitute a broad class of real-life

cases. Moreover, because timing decisions are difficult and prohibitively costly to contract

on, if not impossible, they represent a comprehensive and important category of post-auction

moral hazard. In addition, our setup allows us to directly relate to the large literature on real

options, dynamic corporate finance theory (e.g., Leland (1994)), and the theory of optimal

stopping.

That said, the insight that security bids distort post-auction actions applies in greater

generality. Here I discuss a general formulation of the problem and relates it to our setup

and DKS’s. In doing so I highlight why timing decisions are special and why our setup gives

us the analytical tractability to discuss a wide range of issues.

Consider the following general setup. The net present value of the asset in a type-θ

bidder’s hand is V (θ, e), where e is the bidder’s effort, and the effort cost is given by c(e).

Following DKS, we assume V (θ, e) has strict Monotone Likelihood Ratio Property with in θ,

that is, fixing e, the likelihood ratio h(V |θ)/h(V |θ′) is increasing in V if θ < θ′. If V (θ, e) is

deterministic, as is the case in our earlier setup, this simply implies that it is decreasing in θ.

We also assume that V is weakly increasing in e, to be consistent with our earlier notations.

Upon winning, a bidder who bids index s chooses effort to maximize the following,

E[V (θ, e)− S(V (θ, e), s(θ))]− c(e) (11)

With the usual technical assumptions such as differentiability and concavity, the optimal
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effort can be characterized by the F.O.C.,

E[Ve(θ, e)− S(Ve(θ, e), s(θ))] = c′(e) (12)

For a given set of well-ordered securities, denote the optimal effort for type θ with bid s as

e∗(θ, s). Then following the mechanism design approach in the paper, the expected revenue

to the seller is

NE~θ [Q(θi, θ−i)E [V (θi, e
∗) + F (θi)/f(θi) [(Vθ(θi, e

∗)) (1− SV (V (θi, e
∗), e∗))]]] (13)

where e∗ represents e∗(θi, s(θi)). In principle, various security designs can be ranked. In

particular, when we take the limit that the moral hazard goes away, the problem is exactly

reduced to the case in DKS. To see this, we note that for a fixed effort, a steeper security

generally implies (1− SV (V (θi, e
∗), e∗)) is smaller, and because Vθ(θi, e

∗) is negative in our

setting, the seller pays a smaller virtual cost — the linkage principle. Moreover, a security

that gives a larger share of the surplus to the seller could distort e so much that the seller

would prefer a bid that gives a smaller share but incentivize effort better.

Without making further distributional assumptions on θ and functional form assump-

tions on V and e, characterizing in greater detail the optimal effort, equilibrium bidding,

and revenue ranking would be infeasible. Even though optimal contracts or security designs

are considered in McAfee and McMillan (1987a) (and Board (2007b) for the real option

case), ranking general security designs proves intractable. One attempt is Kogan and Mor-

gan (2010) which only compares equity and debt contracts. This paper complements by

considering the timing moral hazard that appears in a broad category of corporate deci-

sions in real life, and allows general forms of security design, therefore can be viewed as an

incremental step towards solving the general problem.

More specifically, we can interpret P in our baseline model as a “timing effort” e, then

relabel β lnP as c(e), ln(P − θ) as V and ln P−θ
P−θ−S(P,s(θ))

as the security payoff, maximizing
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(11) is equivalent to maximizing over P the following expression:

ln(P − θ − S(P, s(θ)))− β lnP, (14)

which is equivalent to the optimal stopping decision the winning bidder solves, given that

we have shown that the optimal stopping follows threshold strategies. So the moral hazard

of timing is nested in the general formulation as well.

That said, there are several appealing features in our specification. First, V (θ, e) is

deterministic in our case and the security payment depends through θ only through P and

s. Removing the direct dependence of V (θ, e) on θ ensures that the linkage principle does

not drive our results, allowing us to focus on the moral hazard of investment timing; second,

the irreversibility of time plays a role in our setting and the moral hazard distortions can

be asymmetric—a feature absent in static models, as seen in Proposition 2 and Corollaries

3 and 4; finally, absent the moral hazard distortion, a steeper security in our setting indeed

corresponds to a steeper payoff in the general formulation. To see this, note that for two set

of security designs S and Ŝ, and an option exercise without distortion, i.e., P = P ∗(θ), then

ln
P − θ

P − θ − S(P, s(θ))
= ln

P − θ
P − θ − Ŝ(P, ŝ(θ))

⇐⇒ S(P, s(θ)) = Ŝ(P, ŝ(θ))

∂

∂θ
ln

P − θ
P − θ − S(P, s(θ))

<
∂

∂θ
ln

P − θ
P − θ − Ŝ(P, ŝ(θ))

⇐⇒ ∂

∂θ
S(P, s(θ)) <

∂

∂θ
Ŝ(P, ŝ(θ))

and the correspondence follows directly from the definition of “steepness” in DKS. These

unique features and the fact that the moral hazard associated with real option exercise is

prevalent imply that auctions of real options under moral hazard indeed constitute a rich

and important category to warrant the detailed analysis in this paper.

7 Conclusion

Auctions of real options are ubiquitous, involve tremendous financial resources, and have

policy implications. To better understand these business transactions, this paper builds on
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earlier studies on security-bid auctions and real options to incorporate post-auction moral

hazard of option exercise. I find that both security design and seller’s commitment sig-

nificantly influence equilibrium outcomes. Common security designs lead to inefficient and

often sub-optimal investment delays and accelerations. Contingent securities can either bet-

ter or worse align the winning bidder’s incentives with the seller, and security designs can

be ranked using a mechanism design approach. Without sellers’ commitment to security

design, the bidding equilibria are equivalent to cash auctions, and post-auction investments

are efficient. Taken together, the results of the paper challenge earlier approaches that an-

alyze security-bid auctions and corporate investments separately: the interactions of these

factors in dynamic settings provide a rich interplay that is not accessible otherwise, and as

a consequence, many conventional understanding should be revised.

As an initial attempt to capture the salient features of auctions of real options under

various settings, this paper presents a rather stylized model. More work is clearly needed.

In particular, the endogenous timing of the sales is worth exploring further. Incorporating

sellers’ private information is also important in many applications, especially M&As. More-

over, some of the novel predictions are consistent with stylized facts, which is reassuring,

and further empirical examinations may reveal more quantitative relations.
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Appendix: Derivations and Proofs

A.1 Proof of Lemma 1 and Proposition 1

Proof. Because S(P ) is upper semi-continuous, P − S(P ) − θ of type θ upon optimal stopping is lower

semi-continuous, and according to Dynkin (1963) and Dayanik and Karatzas (2003) Theorem 1.1, the value

function is the smallest r-excessive majorant of P − S(P ) − θ on the state space of the GBM. Because

Ṽ ∈ [−X − C,W (P0; θ) − X − C] is finite, by Proposition 5.8 and 5.10 in Harrison (2013), the optimal

stopping time is first hitting. Therefore, the value function starting in a continuation region is of the

following general form:

Ṽ (C, S(·), θ) = D(P0;PL, PU ) [PL − S(PL)− θ] +D(P0;PU , PL) [PU − S(PU )− θ]− C −X,

where D(P0;PL, PU ) is the Arrow-Debreu security that pays one dollar when P first hits lower bound-

ary PL before hitting upper boundary PU , and D(P0;PU , PL) is similarly defined, but for first hitting

PU before hitting PL. And PL ∈ [0, P0] and PU ∈ [P0,∞] are the optimal lower and upper thresh-

olds for investment. D(P0;PL, PU ) satisfies 1
2σ

2P 2DPP + µPDP − rD = 0 with the boundary condi-

tions D(P0; 0, PH) = D(P0;PL,∞) = 0, D(PL;PL, PU ) = 1 and D(PU ;PL, PU ) = 0. The solution is

D(P0;PL, PU ) =
(
P γ0 − P

β
0 P

γ−β
U

)(
P γL − P

β
LP

γ−β
U

)−1

, where β is given in (2) and γ = 1 − 2µ/σ − β < 0.

Similarly, D(P0;PU , PL) =
(
P β0 − P

γ
0 P

β−γ
L

)(
P βU − P

γ
UP

β−γ
L

)−1

. The optimal PL and PH are obviously

independent of X and C and are functions of θ and P0 in general.

Next, type θ can always do strictly better than θ̃ > θ by using θ̃’s strategy, thus Ṽ (C, S(·), θ) is decreasing

in θ. For Pt in the exercise region, Ṽ (C, S(·), θ) = Pt−S(Pt)−θ−C−X is obviously continuous in θ. For Pt in

the continuation region, consider a change of ∆θ > 0, 0 < Ṽ (C, S(·), θ)−Ṽ (C, S(·), θ+∆θ) ≤ ∆θ because type

θ+∆θ does weakly better than simply mimicking θ’s strategy. As ∆θ → 0, Ṽ (C, S(·), θ+∆θ)→ Ṽ (C, S(·), θ).
The case of ∆θ < 0 is similar. Continuity in θ follows.

Finally, note that Ṽ is not a function of time t, and the optimal stopping obviously involves the state

variable P first hitting an upper threshold weakly greater than P , or first hitting a lower threshold weakly

smaller than P .

A.2 Proof of Proposition 1

Proof. Double-monotonicity implies that S(·) is continuous, which automatically implies that P − S(P )− θ
of type θ upon optimal stopping is lower semi-continuous. Note that for P0 > PL, P0 − S(P0) − θ >

D(P0;PL, PU )[PL − S(PL) − θ] because P − S(P ) is weakly increasing in P , thus it is never optimal to

start in a continuation region and wait to hit a lower boundary. I therefore conclude that starting in any

continuation region, the optimal stopping is a first hitting time to an upper threshold. In other words, the

optimal strategy has a payoff
(
P0

P

)β
[P − S(P ) − θ] for threshold P ≥ P0. This expression is continuous,

takes positive values for some P ≥ P0 for θ < θ̂, where θ̂ is the cutoff type that participates and at least
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breaks even, and is upper-bounded by
(
P0

P

)β
[P − θ] which approaches 0 as P →∞. Therefore it achieves a

maximum in some compact interval [P0, P̂ (θ)] for some P̂ (θ) ≥ P0, and I denote the maximum by P̃ . The

first-hitting time of P̃ is thus optimal among all stopping times. The proposition ensues.

A.3 Verification Argument for Corollary 1

Here I provide the traditional verification argument to show that the strategy given in the corollary is

indeed optimal among all stopping times. This line of argument, though applicable to many commonly used

securities, has to be applied case-by-case and may require additional technical assumptions. This is to be

contrasted with Proposition 1 which allows us to apply FOC and SOC directly.

Since an upper threshold strategy has payoff
(
P0

P

)β
[P − S(P ) − θ] for P ≥ P0, threshold P̃ is optimal

among all upper threshold strategies. I now verify that it is optimal among all stopping times by showing

the expected value following any stopping time is bounded above by the expected value associated with the

P̃ -threshold strategy.

Let xt = e−rtŴ (Pt), where Ŵ (Pt) = D(Pt; P̂ )[P̂ − S(s, P̂ ) − θ] and P̂ = max{Pt, P̃}. For P ≤ P̃ ,

using an extended version of Itô’s formula (as, for example, in Karatzas and Shreve (1988), page 219),

dxt = e−rt[DŴ (Pt)− rŴ (Pt)]dt+ e−rtŴP (Pt)σPtdBt, where DŴ (P ) = ŴP (P )µP + 1
2ŴPP (P )σ2P 2. ŴP

is bounded as seen by direct computation, thus by Proposition 5B in Duffie (2009) (also found in Protter

(2004)), the last term in dxt is a martingale under the current measure. The drift is DŴ (P )− rŴ (P ) = 0

by the definition of β in (2). For P > P̃ , apply Tanaka’s Formula (Revuz and Yor (1999), also Karatzas

and Shreve (1988)), the drift DŴ (P ) − rŴ (P ) = µP [1 − S′(P )] − r[P − S(P ) − θ] − 1
2σ

2P 2S′′(P ) <

[µ+ 1
2 (β − 1)σ2]P [1− S′(P )]− r[P − S(P )− θ] < [µβ + 1

2σ
2β(β − 1)− r][P − S(P )− θ] = 0, where I have

used (1 − β)(1 − S′(P )) = (1 − β)(1 − α) < 0 = PS′′(P ) for equity, and there is no discounted local time

for equity. Therefore, xt is a super-martingale, implying for any stopping time τ , Ŵ (P0) = x0 ≥ E[xτ ] =

E[e−rτŴ (Pτ )] ≥ E[e−rτ (Pτ − S(s, Pτ )− θ)]. The equality holds for the first-hitting time with threshold P̃ ,

establishing its optimality.

A.4 Proof of Proposition 2 and Corollaries 3 and 4

Proof. Note that D(P0;P )(P − θ) is the real option value without distortion from security bids. At the

optimal threshold, if the discounted security payoff can be higher by picking a higher threshold, it cannot

be the case that the real option is weakly accelerated, because otherwise the real option value is also weakly

higher by picking an infinitesimally higher threshold, making waiting longer a dominant deviation from the

optimal threshold. The same argument applies to the case in which the discounted security payoff is weakly

higher by picking a lower threshold: there is a dominant deviation to an infinitesimally lower threshold if

the option value is strictly higher, unless the optimal threshold is already at P0 which means the exercise is

as efficient as in the case of cash bids.
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The proofs for the corollaries are similar, but the change in the discounted security payoff is evaluated

at P ∗(θ).

A.5 Equilibrium Characterization for Formal Auctions

Lemma 2

Proof. For s1 < s2 and θ1 < θ2, because V (s, θ) is absolutely continuous with derivative in s decreasing in

θ,

ln

(
V (s1, θ1)V (s2, θ2)

V (s1, θ2)V (s2, θ1)

)
=

∫ s2

s1

∂V (s′, θ2)

∂s
ds′ −

∫ s2

s1

∂V (s′, θ1)

∂s
ds′ < 0 (15)

i.e., V (s, θ) is log-submodular, and thus strictly submodular. Let Q(s) be the probability of winning.

Because s(θ) ∈ argmaxsQ(s)V (s, θ) = argmaxs ln(Q(s)V (s, θ)), by Topkis (1978), s(θ) is non-increasing in

θ. If s(θ) < sH were constant on an interval, the bidder with the lower θ can increase his bid marginally and

increase his probability of winning (thus his payoff) by a discrete amount. Therefore s(θ) must be decreasing

in type for types bidding less than sH . Therefore, Q(s(θ)) = [1− F (θ)]N−1. Note s is also continuous in θ,

lest a type right below a discontinuity could lower his bid marginally without affecting the chance of winning.

Next, by direct revelation, θ ∈ argmaxθ′∈[θ,θ]Q(s(θ′))V (s(θ′), θ). For any θ′ < θ,

Q(s(θ))V (s(θ), θ) ≥ Q(s(θ′))V (s(θ′), θ) = Q(s(θ′))[V (s(θ), θ) + V1(s∗, θ)[s(θ′)− s(θ)]]

for some s∗ between s(θ′) and s(θ). Since V1 < 0, the above expression can be written as

Q(s(θ′))−Q(s(θ))

θ′ − θ
V (s(θ), θ)

−Q(s(θ′))V1(s∗, θ)
≥ s(θ′)− s(θ)

θ′ − θ

Similarly, exchanging θ and θ′, for some s∗∗ between s(θ) and s(θ′),

Q(s(θ′))−Q(s(θ))

θ′ − θ
V (s(θ′), θ′)

−Q(s(θ))V1(s∗∗, θ′)
≤ s(θ′)− s(θ)

θ′ − θ

Taking the limit we get (5).

As V (s, θ) is continuous in s over [sL, sH ] and decreasing in θ, maxs V (s, θ) exists and sup{θ ≤ θ|[1 −
F (θ̂)]N−1 maxs V (s, θ̂) ≥ 0} gives the cutoff type. In equilibrium, s(θ̂) = sup{s ∈ [sL, sH ]|V (s, θ̂) ≥ 0},
otherwise bidding slightly more increases the winning probability discretely from zero while still breaking

even upon winning. As V (s(θ̂), θ̂) ≤ W (P0; θ̂) − X and W (P0; θ̂) − X = 0 in cash auctions, the cutoff

type for security bids is in general weakly smaller than that in cash auctions. With the absolute continuity

assumption in the proposition, the cutoffs are the same as in cash auctions.

This establishes uniqueness of the equilibrium, whose existence follows from the sufficiency of bidders’

F.O.C. - the quasiconcavity of ln(Q(s)V (s, θ)). For any s′ ∈ (s(0), s(θ)), ∃θ′ ∈ (0, θ) such that s(θ′) = s′.

Submodularity of V implies ∂
∂s ln[Q(s′)V (s′, θ)] > ∂

∂s ln[Q(s′)V (s′, θ′)] = 0. Similarly, ∂
∂s ln[Q(s′)V (s′, θ)] <

0 for s′ ∈ (s(θ), s(θ)). Therefore for every θ, there exists a unique s maximizing Q(s)V (s, θ).
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Lemma 3

Proof. Since Π is a left-continuous map, V (s, θ) is left-continuous in s by an argument similar to the one in

Lemma 1 for V (s, θ) to be continuous in θ. Therefore s(θ) is well-defined. Suppose a participating bidder

of type θ bids s > s(θ), he benefits from decreasing s to reduce the states of the world in which he wins

but receives negative payoff. Similarly, he wants to increase s when s < s(θ), assuming any indifference in

bidding is resolved by bidding higher. As V (s, θ) is decreasing in θ, for θ′ > θ, V (s(θ), θ′) < V (s(θ), θ) = 0 =

V (s(θ′), θ′). Thus s(θ) > s(θ′), leading to s(θ) being decreasing. The cut-off type is the same as in FPAs by

an argument similar to that in the proof of Lemma 2.

Corollary 5

Proof. When P0 increases or X decreases, θ̂ weakly increases, thus potentially a positive measure of originally

non-participating bidders are bidding. Given the bidding strategy in SPAs and the fact that non-negative

V is non-increasing in s, decreasing in X and increasing in P0, for each original participant increasing P0

or decreasing X results in a bigger s. In FPAs, let s̃(θ) denote the bidding strategy after P0 increases or

X decreases. Then s̃(θ) ≥ s(θ) at least for the original cutoff type θ̂old. If s̃(θ) = s(θ) for any θ ∈ [θ, θ̂old],

s̃′(θ) > s′(θ) by Lemma 2, thus s̃(θ) stays above s(θ) for a positive measure of types. Overall we have a

positive measure of types bidding bigger s, and all types bidding weakly bigger s. For the same reason, the

result holds when N increases in FPAs. Consequently, the winner bids a greater index with more competition,

smaller initial cost, or higher threshold for auction.

A.6 Proof of Proposition 3

Proof. Let Q(θ̃i, θ−i) be the probability of allocating the project to bidder i, who has investment cost

K(θi, θ−i), where K is symmetric in other bidders’ report types, and has positive derivative in θi denoted

by K1 that is uniformly bounded by a constant A > 0. In the main model of this paper, K(θi, θ−i) = θi,

but this specification allows other cases with interdependent values such as common-value auctions.

The expected utility at time zero to type θi upon participating and optimally investing is

U(θi, θ̃i) = Eθ−i
[
Q(θ̃i, θ−i) max

τ≥ta
EP
[
e−rτ (Pτ −K(θi, θ−i))−

∫ ∞
ta

e−rtS(θ̃i, θ−i, It)dt− e−rtaX
]]
.

As S(θ̃i, θ−i, It) could be artificially constructed that an optimal stopping time for exercising the real option

may not exist, it is reasonable to focus attention on the set of S(θ̃i, θ−i, It) such that an optimal stopping

time exists for all types under a direct mechanism. With this restriction, let τ∗(θi, θ̃i, θ−i) denote the optimal

stopping time that is almost surely bigger than ta, and τ∗i = τ∗(θi, θi, θ−i). Incentive compatibility requires

U(θi) ≡ U(θi, θi) ≥ U(θi, θ̃i) and the individual rationality requires U(θi) ≥ 0.

The IC constraint can be written as θi ∈ argmaxθ̃i∈[θ,θ] U(θi, θ̃i) ∀ i. Let a = (τ, θ̃) denote the action

pair of reporting θ̃ and rationally exercise following the stopping time τ . Let
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g(a, θ) = Q(θ̃, θ−i)EP
[
e−rτ (Pτ −K(θi, θ−i))−

∫∞
ta
e−rtS(θ̃, θ−i, It)dt− e−rtaX

]
Then following the argument in Milgrom and Segal (2002), for any θ′,θ′′ ∈ [θ, θ] with θ′ < θ′′,

|U(θ′)− U(θ′′)| =Eθ−i
[∣∣∣∣sup

a′
g(a′, θ′)− sup

a′′
g(a′′, θ′′)

∣∣∣∣]
≤Eθ−i

[
sup
a
|g(a, θ′)− g(a, θ′′)|

]
= Eθ−i

[
sup
a

∣∣∣∣∣
∫ θ′

θ′′
gθ(a, θ)dθ

∣∣∣∣∣
]

≤Eθ−i

[∫ θ′′

θ′
sup
a
|gθ(a, θ)| dθ

]
≤ A|θ′′ − θ′|

This implies U(θ) is absolutely continuous, and thus differentiable everywhere. U(θ) = U(θ̂)−
∫ θ
θ
U ′(θ′)dθ′.

By Theorem 1 in Milgrom and Segal (2002), U ′(θ) = gθ(a
∗, θ). Writing it in the integral form gives that any

incentive compatible and individually rational mechanism satisfies

U(θi) = Eθ−i

[∫ θ

θi

Q(θj , θ−i)EP [e−rτ
∗
j ]K1(θj , θ−i)dθj

]
+ U(θ) (16)

where U(θ) ≥ 0. Moreover τi ≥ ta ∀i for time consistency.

The ex-ante social welfare is NE~θ[Q(θi, θ−i)
(
EP [e−rτ

∗
i (Pτ∗i −K(θi, θ−i))]− e−rtaX

)
], and the seller’s

ex ante revenue is the social welfare less the agents’ ex-ante utilities: NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i −

K(θi, θ−i))]− e−rtaX)]−NE~θ[U(θi)]. Using (16) and taking expectations over the winning bidder’s type, it

becomes

NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i −K(θi, θ−i)− F (θi)/f(θi)K1(θi, θ−i))]− e−rtaX)]−NU(θ) (17)

When K(θi, θ−i) = θi, this simplifies to NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i − z(θi))] − e

−rtaX)] −NU(θ). With

standard securities, a participant with the least cost wins, the proposition follows.

A.7 Proof of Proposition 4

Proof.

Lemma 4. The seller and a participating bidder i have the same valuation for bid Πi, that is, R(Πi) =

Ci +Rθi(S
i).

Proof. If this were not the case, at least one bidder would find the seller values his security payment less

than he does, and would rather pay the seller’s valuation in cash, which keeps his marginal probability of

winning the same. Formally, the lemma is obviously true if only one type uses Πi. If more than one type

use this bid, either it holds or one of the types θ1 has Rθ1(Si) + Ci 6= R(Πi). Then ∃ θ2 (potentially = θ1)

s.t. R(Πi) < Ci +Rθ2(Si). Consider the deviation for bidder 2 in the subgame to a cash bid equal to R(Πi)
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and invest efficiently. This deviation is profitable because he creates weakly greater social surplus, pays less,

and has the same marginal probability of winning. Thus by contradiction R(Πi) = Ci +Rθi(S
i) always.

This in turn leads to:

Lemma 5. In a bidding equilibrium, a participating bidder i has τ iθi = τ∗i , where τ∗i is the stopping time

corresponding to the threshold strategy with investment trigger P ∗(θi).

Proof. The intuition is that if a bidder does not invest efficiently upon winning, he can always deviate to a

bid that results in efficient investment, and offer more cash to the seller to increase his marginal probability

of winning without reducing the payoff upon winning.

Now suppose τ iθi 6= τ∗i , consider deviating to a cash bid C = R(Πi). The payoff from deviation

E[e−rτ
∗
i (Pτ∗i −θi)]−R(Πi) dominates the original payoff E[e−rτ

i
θi (Pτ iθi

−θi−Si(Pτ iθi ))]−C
i = E[e−rτ

i
θi (Pτ iθi

−
θi)]−Rθi(Si)− Ci. Thus the deviation is profitable and the claim follows.

The intuition is that if a bidder does not invest efficiently upon winning, he can always deviate to a bid

that results in efficient investment, and offer more cash to the seller to increase his marginal probability of

winning without reducing the payoff upon winning.

Lemma 6. Informal auctions only admit fully-separating equilibria.

Proof. Suppose a non-singleton set Θp of types pool to bid Π in FPAs, or have the same drop-out bid in

SPAs. The claim follows if there is always a profitable deviation by a type in this set.

From Lemma 5, a type θ in expectation pays C +D(P0;P ∗(θ))S(P ∗(θ)). Let θk = argmaxθ′∈Θp Rθ′(S)

where Rθ′(S) = D(P0;P ∗(θ′))S(P ∗(θ′)). Then R(Π) ≤ C + D(P0;P ∗(θk))S(P ∗(θk)). If the inequality is

strict, type k can profitably deviate to cash bid R(Π). Otherwise, Rθi(S) = Rθj (S) = R(Π) − C, for some

θi < θj both in Θp, but there is still a profitable deviation:

I first argue that Θp contains a positive measure of types. For any θn ∈ (θi, θj)
⋂

Θc
p, call his bid Π̃. Let

Q and Q̃ be the probability of winning when bidding Π and Π̃. Since θi does not want to deviate to cash

bid R(Π̃), Q[W (P0; θi) − R(Π) − X] ≥ Q̃[W (P0; θi) − R(Π̃) − X]. Similarly, Q[W (P0; θj) − R(Π) − X] ≥
Q̃[W (P0; θj)−R(Π̃)−X]. As θi 6= θj , the equality signs cannot hold simultaneously. Thus for θn ∈ (θi, θj),

Q[W (P0; θn) − R(Π) −X] > Q̃[W (P0; θn) − R(Π̃) −X]. This means θn can profitably deviate to cash bid

R(Π). Therefore, it has to be that [θi, θj ] ∈ Θp.

Next, note W (P0; θi) − X − Rθi(S) − C > W (P0; θj) − X − Rθj (S) − C ≥ 0. Type θi can deviate

profitably to cash bid ε+R(Π) which reduces his payoff by ε upon winning but increases his marginal chance

of winning by a discrete amount (because he separates from a positive measure of types).

As every bidder upon winning invests efficiently, a better type has greater valuation than worse types and

can separate. This also implies that no two bidders place the same bid.

With these lemmas, the equilibrium bids turn out to be rather simple: because every bidder upon

winning invests efficiently, a better type generates greater social surplus and can offer more to separate from

worse types. This lemma also implies that no two bidders place the same bid.
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With the lemmas, now consider the bidding strategy from a FPA in cash. The valuations for the bids

are simply the cash amounts. I show there exists a belief that supports an equilibrium with this bidding

strategy in the informal auction. First, there would not be any deviation to another cash amount since the

bidding strategy comes from the equilibrium in FPA cash auction. Next, for beliefs such that upon seeing

an out-of-equilibrium bid Πi, the auctioneer believes it comes from θ̃i = argminθ∈[θ,θ][Rθ(S
i) + Ci] and

gives it a valuation R̃. If bidder i finds this deviation attractive (yielding an expected payoff more than the

original amount after cash payments), then he also finds deviating to cash bid R̃ weakly more attractive,

contradicting the fact that no deviation to another cash amount is profitable. Thus the equilibrium from a

first-price cash auction is an equilibrium in the informal auction. The argument also applies to cash-like bid

Π such that R(Π) is independent of the seller’s belief on the bidders’ types.

Next I show any bidding equilibrium in the informal auction has the same allocation outcome and

expected payoffs as cash auctions. The seller forms correct beliefs about types since Lemma 6 rules out

pooling. Bidder i’s bid Si can be replaced by an equivalent cash bid. This would not change the marginal

probability of winning by Lemma 4, neither does it change the payoff upon winning as Lemma 5 implies the

total surplus is the same. Since the bidders face the same maximization problem as in a FPA with cash,

almost every bid is cash-like in terms of its expected payoff.

A.8 Proof of Proposition 5

Proof. Lemma 4 applies to the winner’s final bid and the losers’ drop-out bids, and since bidder i can bid

a maximum value of W (P0; θi) −X, bidding until the score reaches this value is an undominated strategy.

This implies Lemma 6 is true for ascending informal auctions. Finally, Lemma 5 applies to the winner’s bid;

otherwise, a profitable deviation using cash exists.

In equilibrium, the proof of Lemma 4 goes through for the winner’s final bid and each type’s drop-out

bids, otherwise there must be multiple types using the same bid and for some type, its bid is undervalued

and he can profitably deviate to bidding cash. Since by bidding cash, bidder i has a value of W (P0; θi)−X,

so he would remain in the game before the score surpasses this value. Since W (P0; θi)−X 6= W (P0; θj)−X
for θi 6= θj , different types drop out at different score values, resulting in a separating equilibrium strategy

of dropping out. When there is one bidder remaining, he has to pay a score at which the second last bidder

drops out. If the bid does not lead to efficient investment, the winning bidder can simply bid cash equal to

the score, and increase his own profit by investing efficiently. Therefore Lemma 5 holds.

With these results, the allocations, payoffs, and investment outcomes in a bidding equilibrium are iden-

tical to those in an ascending second price auction in cash. By revenue equivalence theorem, they are

equivalent to those in first-price and second-price cash auctions too. The auction timing strategy by the

seller is thus the same as that in a first-price informal auction.
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A.9 Discussion of Cash Dominating M-regular Securities

Proof. Suppose s is the security the type θ bids, without loss of generality, bi(s) ≤ bj(s) if i ≤ j. I define

M-regular security to be a class of contingent securities in the form
∑
i∈I ai(s)[P − bi(s)]+, where I is a

countable set and
∑
i ai(s) ≤ 1 ∀s, such that for M > 0, and β

β−1θ ∈ [bm, bm+1),

min

∣∣∣∣ β

β − 1
θ − bm

∣∣∣∣ , ∣∣∣∣ β

β − 1
θ − bm+1

∣∣∣∣ ,
∣∣∣∣∣∣
∑
i≤m

aibi − θ
∑
i≤m

ai

∣∣∣∣∣∣
 > M. (18)

Most common securities are M-regular securities or can be closely approximated by M-regular securities.

For example, equity corresponds to a1 = α(θ), a2 = b1 = 0, b2 = ∞. For any M > 0, cash bids dominate

M -regular securities in FPAs and SPAs in terms of expected revenue and social welfare, as the number of

bidders gets large.

To show this, consider pure contingent securities. Extension to include cash is straightforward. Condi-

tional on an auction timing, cash auctions lead to efficient investments and obviously dominate in terms of

welfare. For the seller’s revenue, first consider SPAs. The revenue is E[e−rτ̃S(s(θ(2)), Pτ̃ )1{θ(2)≤θ̂}]

= E[
(
e−rτ̃ (Pτ̃ − θ(1))− U(τ̃ , s(θ(2)), θ(1))

)
1{θ(2)≤θ̂}] ≤ E[

(
e−rτ̃ (Pτ̃ − θ(1))−X

)
1{θ(1)≤θ̂}] ≡ R0, where τ̃ =

argmaxτU(τ, s(θ(2)), θ(1)) and U(τ, s, θ) = E[e−rτ (Pτ − S(s, Pτ ) − θ)]. Similarly in FPAs, the revenue is

bounded above by R0 with τ̃ = argmaxτU(τ, s(θ(1)), θ(1)). Let sw denote the index the winning bidder pays

in general. Then in FPAs and SPAs, the revenue is bounded above by R0 with τ̃ = argmaxτU(τ, sw, θ(1))

The revenue from cash auction would be the expected second highest valuation R2 ≡ E[(W (P0; θ(2)) −
X)1{θ(2)≤θ̂}]. When N →∞, θ(2) − θ(1)

a.s.→ 0. Thus W (P0; θ(2))−W (P0; θ(1))
a.s.→ 0. Now 1{θ(2)≤θ̂} and the

above are bounded, by bounded convergence, R2 converges a.s. to R1 ≡ E[(W (P0; θ(1))−X)1{θ(1)≤θ̂}].

If R1 − R0 converges to a quantity bounded below by a positive constant, the claims follow. First

note U(τ, sw, θ(1)) admits an optimal stopping solution involving threshold strategies. To see this, write

U(τ, sw, θ(1)) = D(P0;P )[P − θ(1) −
∑
i∈I ai(sw)[P − bi(sw)]+], which admits a maximizer P̃ (θ(1)). Then

use that as an investment trigger and apply the standard verification argument. Next, as θ(1) − θ
a.s.→ 0,

the investment trigger in cash auctions converges to P ∗ = β
β−1θ, and P̃ (θ(1)) to P̃ ∗ = P̃ (θ). Whether

P̃ ∗ ∈ [bm, bm+1) or not, |P̃ ∗ − P ∗| ≥ M . Since P ∗ is the optimal trigger for E[e−rτ (Pτ − θ)], R1 − R0
a.s.→ ε

for some ε > f(M), where f(M) is a function of M that is positive and independent of N . Therefore as N

becomes big, R2 converges to R1 which dominates R0 in the limit. Thus cash auctions yield higher revenue

than the security-bid auctions.

A.10 Proof of Proposition 6

Proof. To maximize seller’s revenue, for every realization of the types and any allocation rule, the seller

wants winner θi to invest when P first hits P ∗(z(θi)). The proposed contingent payment achieves this

outcome because given the royalty rate for type θ, the investment threshold is P bonus = β
β−1

θ
1−φ = β

β−1z(θ).

Moreover, U(θ) = 0 and the project is only allocated to types that contribute positively to the revenue. z is
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increasing in θ leads to the unique cutoff type θ̂ proposed and allocation to a participant with the smallest

θ. With interdependent values, for the same set of realized types, assume K(θi, θ−i) ≤ K(θj , θ−j) if θi ≤ θj .
Then the cutoff type is well defined and the type with the smallest θ gets allocated the real option, if at all.

That U(θi) is decreasing in θi implies any mechanism satisfying the above meets IR of all types. Suppose

θi < θ̃i, (16) leads to U(θi, θ̃i) = U(θ̃i)−
∫ θ̃i
θi
U1(θ, θ̃i, τ

∗(θ, zi(θ̃i, θ−i, ·)))dθ ≤ U(θ̃i)−
∫ θ̃i
θi
U1(θ, θ, τ∗(θ, zi(θ, θ−i, ·)))dθ

= U(θi), where the inequality follows from the differential form of (16) and the fact that reporting a higher

investment cost leads to a lower probability of winning and a later investment. Similarly, U(θi, θ̃i) ≤ U(θi)

for θi > θ̃i. Thus incentive compatibility holds if (16) holds, which requires the C(θi, θ−i) given in the

proposition.

B. Institutional Details and Empirical Evidence

Oil and Gas Auction and Drilling in the Gulf of Mexico

Offshore drilling activities in the gulf of Mexico date back to the 1940s. The US Congress passed the

Outer Continental Shelf Lands Act (OCSLA) in 1953 to grant the Department of the Interior the authority

for conducting lease auctions, collecting royalties, and overseeing all activities associated with the drilling in

federal waters. The Minerals Management Service (MMS) traditionally conducted the lease auctions, but

due to a reorganization in response to the DeepWater Horizon oil spill in 2010, it was replaced by the Bureau

of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE).

Most leases were sold in “Bonus-bid” auctions, where the royalty rate on future revenue is fixed and the

bidders bid upfront cash. The current royalty rate is standardized at 18.75%, but has historically taken on

different values at various times and for different leases.

The empirical tests in this paper utilize the following policy change: Common incentives for offshore

oil and gas development include certain forms of royalty relief. The OCSLA authorized the Secretary of

Interior to grant royalty relief to promote increased production in oil and gas (43 U.S.C. 1337). The Deep

Water Royalty Relief Act of 1995 (DWRRA) expanded the Secretary’s royalty relief authority in the Gulf of

Mexico outer continental shelf. Eligible leases are those issued in the Gulf of Mexico between 1996 and 2000

at depths greater than 200 meters located wholly west of 87 degrees, 30 minutes West longitude. Interest in

deep water surged after the enactment of the act (August 8, 1995), with 3,000 deepwater leases bid between

1996 and 1999. There is also significant increase in annual deepwater oil production. Greater details on

various royalty relief programs can be found at BOEM’s official website: http://www.boem.gov/Oil-and-

Gas-Energy-Program/Energy-Economics/Royalty-Relief/Index.aspx.

Data Construction

Data on the lease auctions, drilling, and mineral production are from the Minerals Management Service

of the Department of Interior. I observe detailed lease-level variables, bolehole-level variables, lease sale

data, ownership data, and production data. For the cost of drilling and equipping a borehole that varies by
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year, region, well type, and well depth, I use John Beshears’s inflation-adjusted estimates based on annual

surveys by the American Petroleum Institute (API) and GDP implicit price deflator index from the Bureau

of Economic Analysis. The detailed description of various variables are in Beshears (2013). The estimation

uses leases auctioned in 1991-2000 with a total of 7858 leases.

Monthly prices for oil and natural gas are obtained from the World Bank Commodity Price Data (Index

Mundi Data Set and the Energy Information Administration (EIA) also contain futures prices, but are not

monthly). The prices are inflation-adjusted using monthly CPI data from the Federal Reserve Bank in St.

Louis. (http : //research.stlouisfed.org/fred2/graph/?s[1][id] = CPIAUCSL). The discussion in this

paper uses average spot prices and the results are robust to using different categories of crude oil and natural

gas (such as West Texas Intermediate, Brent Crude Oil, etc.).

The key variables in the empirical exercises are listed below:

Event : The event is first exploratory drill. For this, I take the spud date for the first exploratory bolehole

drilled in each lease tract.

DEEP : Dummy for leases with water depth greater than 200 meters in areas west of the 87 degrees 30

minutes West longitudinal line.

RELIEF : Dummy for the implementation of DWRRA. It takes the value 0 for leases auctioned before

August 1995 and 1 afterward.

DEEP*RELIEF : Interaction term for the DEEP and RELIEF dummies. The coefficient for this variable

is of interests in the diff-in-diff test.

RTY : The royalty rate specified in the lease agreement. It is typically 1/6 or 1/8 in this data set.

DUR: The number of days from lease auction to expiration. Most lease terms are 5-10 years.

DEPTH : The water depth of the leased tract. The results reported use minimum water depth, and are

robust to alternative specifications using maximum water depth or average water depth.

SIZE : The area covered under each lease. Most leases had an area of approximately 5,000 acres, though

some were smaller.

MKT : The number of leases sold in the same sale as a proxy for the market demand for oil and gas leases.

When the market demand is high, the quality of the marginal lease sold may be low in the sense that the

reserve quantity is small or there is huge uncertainty, which in turn affects drilling decisions.

P(t): Average spot price for oil and gas. The results are robust to the inclusion of oil and gas prices

separately, or prices lagged by 1-5 months.

VOL(t): Average trailing-12-month volatilities for oil and gas spot prices. The results are robust to the

inclusion of oil and gas price volatilities separately and to variations within one year of the trailing window.

COST(t): The industry average drilling cost for dry, oil, and gas boreholes. The drilling cost is the initial

cost plus the equipping cost.
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Empirical Models and Tests

I employ a Cox proportional hazard model to test whether a lower royalty rate leads to greater likelihood

of exploratory drill. For identification, I use difference-in-difference method. Cox hazard models probably

represent the state of the art in survival analysis with reduced-form models. They make the assumption

that the hazard rate κ(t) of exploratory drill at time t conditional on lack of drill until time t is κ(t) =

ψ(t)[exp( ~X(t)T~γ)], where ψ(t) is the baseline hazard rate that is completely unrestricted, and X(t) is a

vector of independent variables listed earlier (AWL is only for the first hypothesis where as DEEP, RELIEF,

DEEP*RELIEF are only for the second). This specification handles censoring of observations and allows

time-varying covariates. There is no survivorship bias or response bias because the leases are sampled at

birth (the auction), and all leases are recorded by the Department of Interior.

Table 2 gives one analysis using leases auctioned in 1991-2000. The coefficient of DEEP ∗ RELIEF
indicates that the implementation of DWRRA led to an increase in the difference in exploration likelihood

between treated and untreated groups.

A-11



Tables and Figures

Table 2: Exploration of Oil and Gas Tracts

This table presents estimates from a Cox regression with time-varying covariates. The dependent variable is
time-to-exploratory-drill, which measures the number of days from the lease auction to the first exploration.
The independent variables are DEEP indicating the DWRRA-treated group, RELIEF indicating whether
DWRRA is implemented, the variable of interest DEEP*RELIEF capturing the interaction, oil and gas
price measure P (t), price volatility V OL(t), drilling cost COST (t), royalty rate RTY, water depth DEPTH,
lease length DUR, tract size SIZE, market demand MKT, firm fixed effects FIRM f.e., and information
externality INFO. If the dependent variable is observed without any realization, it is treated as a censored
event. Model χ2 reports the joint significance of the estimates.

Variables Hazard Ratio Coefficient Standard Error

DEEP*RELIEF 1.1080∗∗∗ 0.1024∗∗∗ 0.0689
DEEP 1.0830 0.0794 0.1337

RELIEF 0.5389∗∗∗ -0.6183∗∗∗ 0.1958
MKT 0.9989 -0.0011∗∗∗ 0.0002

DEPTH 0.9997∗∗∗ -0.0003∗∗∗ 0.0001
SIZE 1.0000∗∗ 0.0000∗∗ 0.0000
RTY 1.0120 0.0117 0.0517
DUR 1.0040 0.0039 0.0047
P(t) 1.0790∗∗∗ 0.0764∗∗∗ 0.0277

VOL(t) 1.0150 0.0152 0.0172
COST(t) 0.9996 -0.0004 0.0010

No. of leases = 7858 Model χ2 = 451 FIRM f.e. Yes INFO Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 1: Investment thresholds under various security designs. Simulated with µ = 0.06, σ = 0.2,
r = 0.16, θ ∼ Unif [1.5, 5], X = 0.4, Y = 0, P0 = 3.
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(a) Unif[20, 50], P0 = 35,
β = 2, X = 10, Y = 0
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(d) Unif[30, 60], P0 = 45,
β = 5, X = 2.5, Y = 0
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(b) Unif[20, 50], P0 = 35,
β = 8, X = 1, Y = 0
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(e) Unif[20, 50], P0 = 35,
β = 25, X = 0.1, Y = 0
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(c) Unif[30, 60], P0 = 45,
β = 5, X = 2.5, Y = 0
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(f) Unif[20, 50], P0 = 35,
β = 8, X = 1, Y = 0

Figure 2: Plots of expected social welfare (a)(b)(c) and seller’s revenue (d)(e)(f) against number
of bidders N . One million simulations in SPA with equity bids and uniformly distributed θ. For
exposition, β is specified instead of the primitives r, µ, and σ.
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Figure 3: Plots of expected social welfare and seller’s revenue against number of bidders N for SPAs
with equities, friendly debts as defined in Section 4.2, and call options. One million simulations
with θ uniformly distributed in [20, 50], P0 = 35, r = 0.123, µ = 0.001, σ = 0.05, and X + Y = 1.
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(b) β = 6, X = 8, Y = 0, N = 30

Figure 4: Plots of expected seller’s revenue and social welfare against the auction threshold for SPAs
with equities, friendly debts as defined in Section 4.2, and call options. One million simulations
for θ uniformly distributed in [200, 500], present value normalized at cashflow at P = 210. For
exposition, β is specified instead of the primitives r, µ, and σ.
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